Highlights from the

GEANT4 Space Users' Workshop

Leuven, 3-7 Oct 2005

Giovanni Santin*

·e

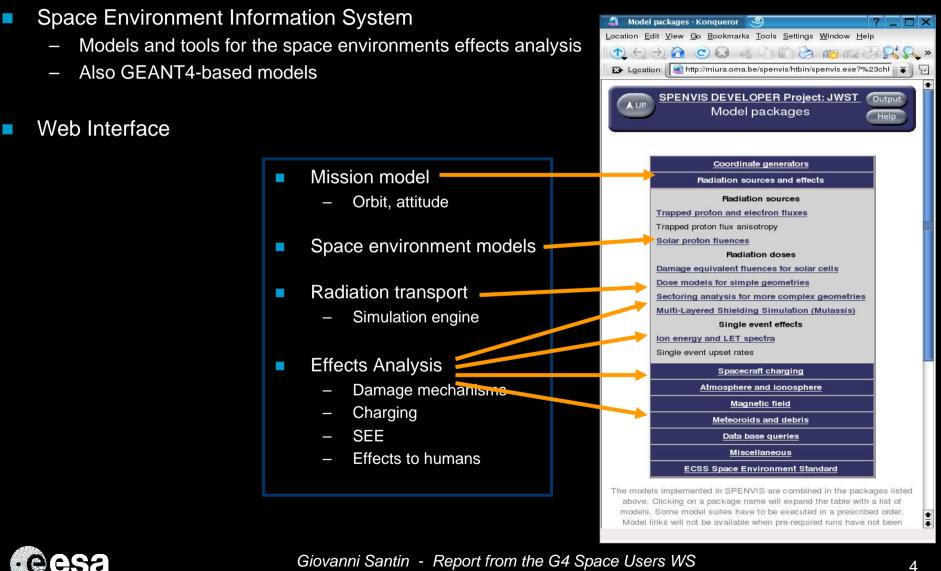
*Rhea System SA @ Space Environments and Effects Analysis ESA / ESTEC

Giovanni.Santin@esa.int

Joint Workshop

- SPENVIS: Space Environment Information System
- Geant4 Space Users
- 3 7 October 2005 Faculty Club Leuven, Belgium

SPENVIS workshop


- SPENVIS
 - Space Environment Information System
 - Sample from sessions
- Joint
- Geant4 Space Users

SPENVIS

Space Environment Information System

Geant4 Coll. WS, Bordeaux, 7 Nov 2005

SPENVIS WS: highlights

- Plasma / Charging
- Solar Cell degradation: GEANT4/MULASSIS :NIEL and degr. models
- Radiation environment models: solar protons, radiation belts
- Single Event Effects (SEE) models

<section-header><section-header><text><equation-block>

SFA

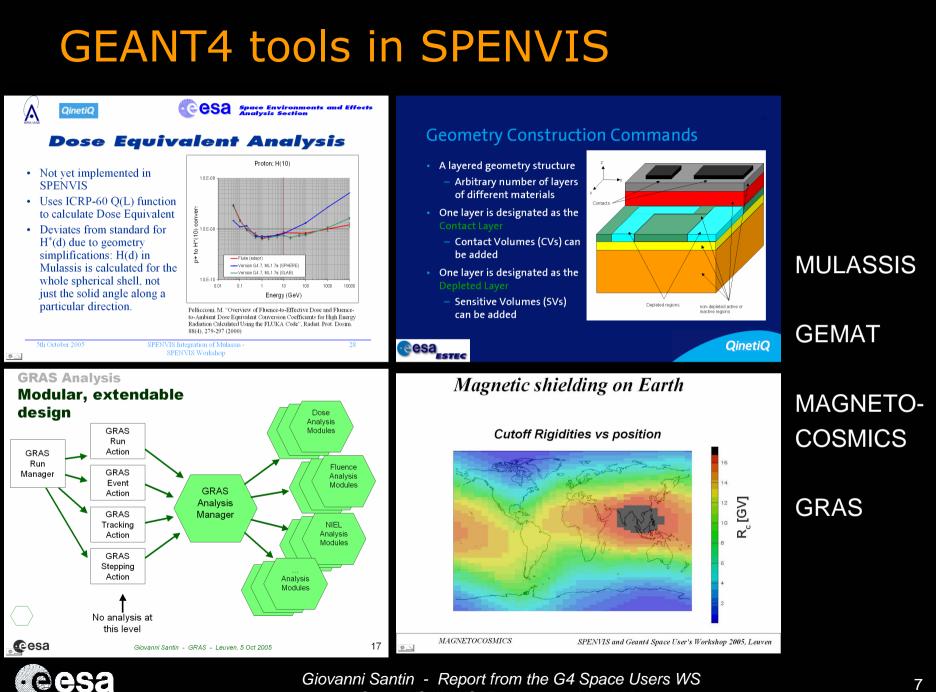
SPENVIS

Geant 4

Displacement Damage Dose Approach For Determining Solar Cell Degradation In Space With Spenvis Implementation

> Dr. Scott R. Messenger SFA, Inc. (messenger@nrl.navy.mil)

SPENVIS & GEANT4 workshop Faculty Club Leuven, Belgium 3 - 7 October 2005



Joint session SPENVIS / GEANT4 Space Users

- SPENVIS
- Joint
 - Introduction to GEANT4 and recent developments
 - GEANT4 tools available within SPENVIS (now or in the near future)
 - MULASSIS , GEMAT, MAGNETOCOSMICS, GRAS
- Geant4 Space Users

Geant4 Coll. WS, Bordeaux, 7 Nov 2005

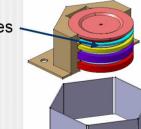
GEANT4 Space Users workshop

SPENVIS

- Joint
- Geant4 Space Users
 - Radiation detectors / monitors
 - Effects to electronics
 - Model modeling
 - Exploration programme

Space radiation detectors / monitors

3.1. Low flux particle detector

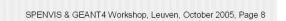

3. The EPT configurations

- detectors around a Hgl2

 - 64-s/1-s time resolution

The HEP Sensor System... ... Design Approach

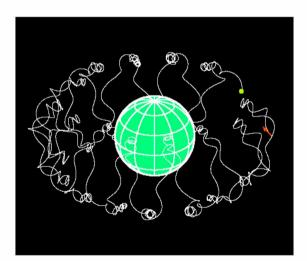
- Range Telescope with:
 - Measured quantities:
 - Range
 - dE/dx in all layers
 - Stack of silicon PIN diodes and absorber layers
 - Size determined by rate about 2 cm diameter
 - Full digital readout
 - Active veto outside
 - Passive shield around Veto

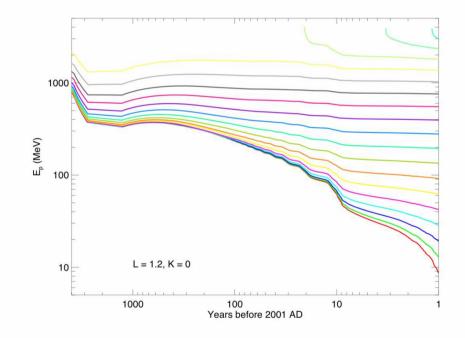

Shieldina

Veto

LISA Pathfinder radiation monitor

- · Variations in charging can compromise science goals of the mission
- Want to measure the flux responsible for charging
- A particle monitor is proposed based on a telescopic arrangement of PIN diodes.
- 5-10 g/cm² of shielding stops particles E<70-90MeV
- Count rates sufficient to detect small fluctuations in flux
- Energy resolution to distinguish GCR and SEP spectra.

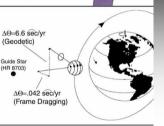



Theoretical Modeling of the Inner Zone Using GEANT4 Simulations as Inputs

R. S. Selesnick and <u>M</u>. <u>D</u>. <u>Looper</u> The Aerospace Corp., Los Angeles, CA USA

> R. A. Mewaldt Caltech, Pasadena, CA USA

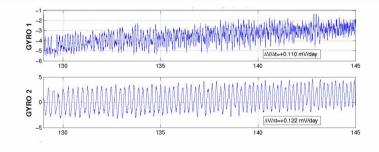
Model modeling...



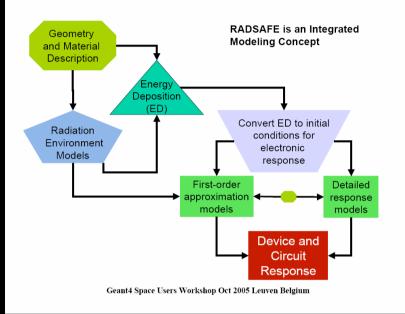
S/C Internal charge deposit

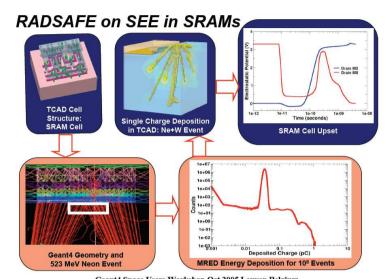
Gravity Probe B

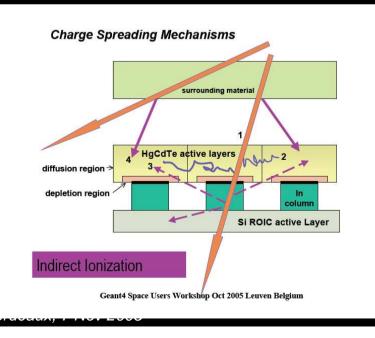
- Aims to detect geodetic and frame-dragging effects on free-falling gyroscopes in low earth orbit
- 600km polar orbit
- Gyroscopes accumulate charge from SAA
- GP-B payload also includes a high energy proton monitor (30-500MeV)



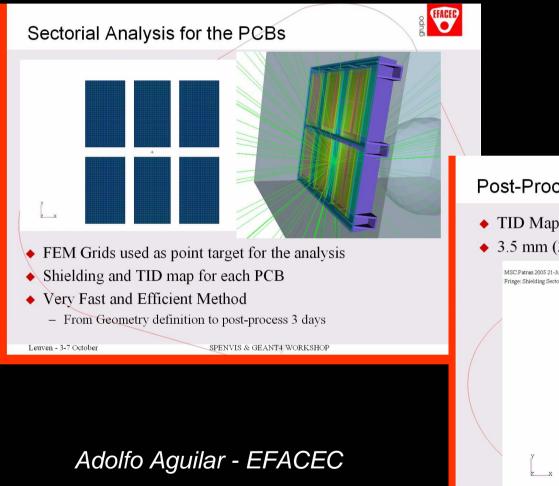
Peter Wass – Imperial College


Results and data comparison

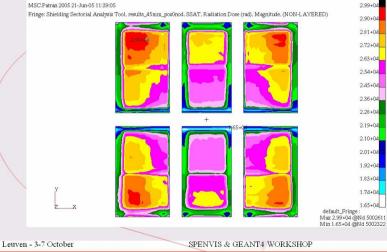

- The average charging rate, calculated from simulations is +12.5e/s
- Charging rate measured on orbit is +0.11mV/day or +8.0e/s


RADSAFE

Geant4 Space Users Workshop Oct 2005 Leuven Belgium


- SEE in microelectronicsDetector response
- R.Reed Vanderbilt University

Giovanni Santin - Report fr Geant4 Coll. <u>WS, Bo</u>

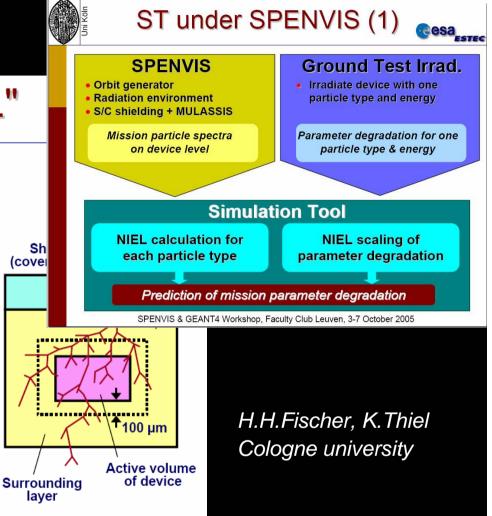

Dose from ray tracing in CAD geometry models

Post-Processed Results using PATRAN

odni

- TID Maps obtained for each location of the PCB
- ◆ 3.5 mm (30krad) AI thickness reduced the mass

Giovanni Santin - Report from the G4 Space Users WS Geant4 Coll. WS, Bordeaux, 7 Nov 2005 12

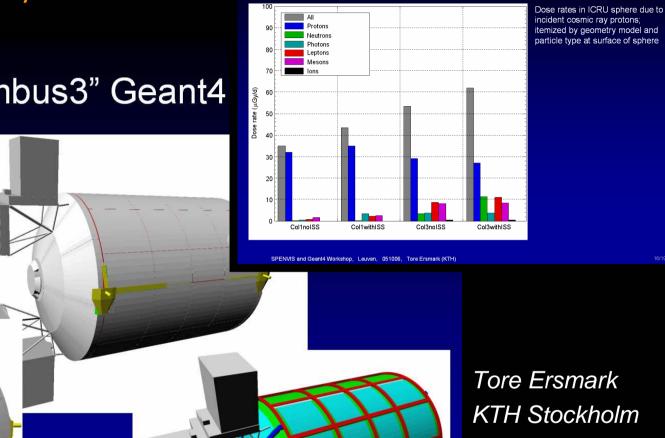

NIEL tool

Tool Module "NIEL"

Two options of running module NIEL

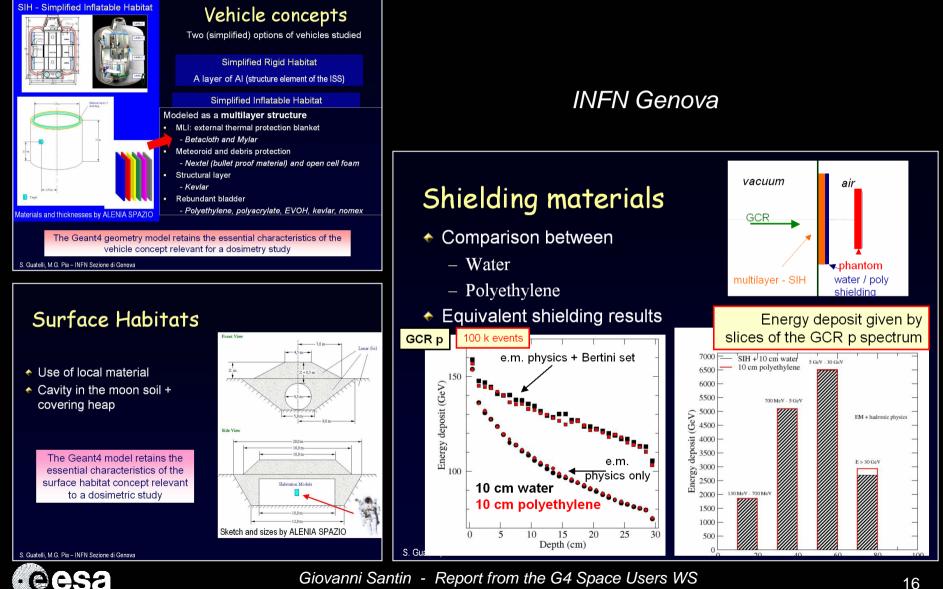
- (a) NIEL calculation by applying the Lindhard partition function to the initial energy of the recoils (not for high-energy projectiles, not for compounds with high ΔZ , no information about 3D defect distribution)
- (b) NIEL calculation by MC simulation of the damage cascade step by step in the vicinity of the active volume (validity of algorithms and models in Geant4 limited at low energy; e.g. binary collision model rather should be replaced by a molecular dynamics code)

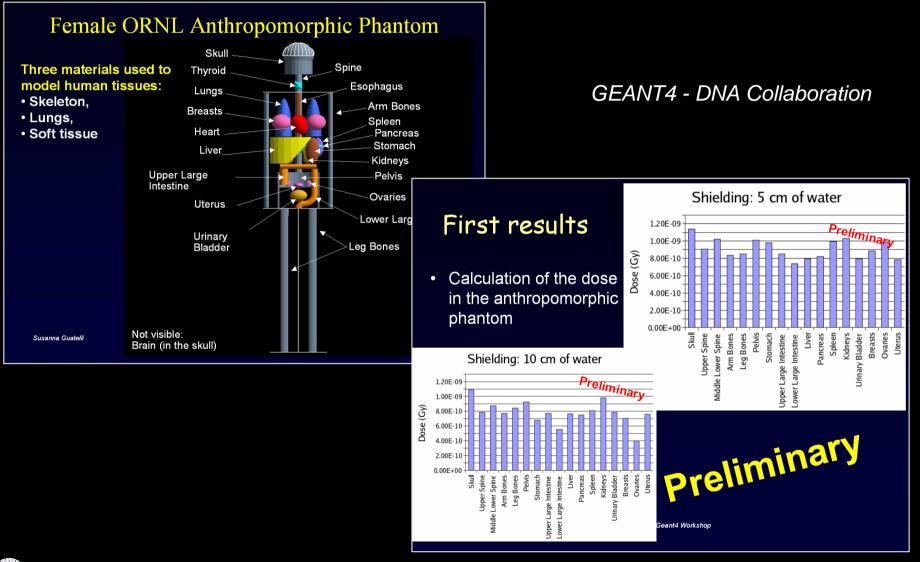
SPENVIS & GEANT4 Workshop, Faculty Club Leuven, 3-7 October 2005


- Uses Screened Coulomb scattering
 - Implementation by Vanderbilt University
 Nucl Instr Meth B 227, Issue 3, 420-430 (2004)

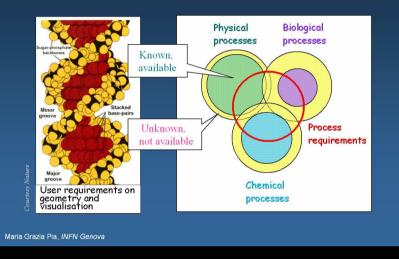
DESIRE Doses in ESA ISS/Columbus

The "Columbus3" Geant4


Cosmic ray proton doses


SPENVIS and Geant4 Workshop, Leuven, 051006, Tore Ersmark (KTH)

REMSIM Radioprotection for interplanetary manned missions


Anthropomorphic phantoms

GEANT4 - DNA

Collection of User Requirements

- EM models in water down to ~7 eV
- Radiobiological models
- DNA models

GEANT4 – DNA Collaboration

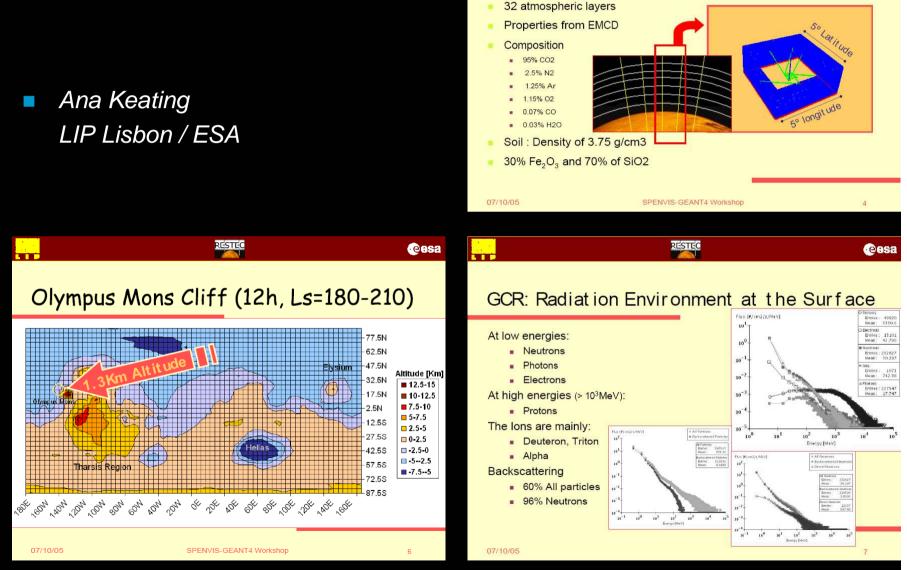
Giovanni Santin - Rep Geant4 Coll. W

TARGET THEORY	SINGLE-HIT	$S = e^{-D / D_0}$	ISED MODEL		
TARGET	MULTI-TARGET				
THEORY	SINGLE-HIT	S = 1- (1- e^{-qD}) ⁿ S = e^{-q_1D}	$[1 - (1 - e^{-q_n D})^n]$		
MOLECULAR THEORY	RADIATION ACTION	$S = e^{-p \left(\alpha D + \beta D^2 \right)}$	In progress:		
MOLECULAR THEORY	DUAL RADIATION ACTION	$\mathbf{S} = \mathbf{S}_0 \; e^{- \mathbf{k} (\xi \mathrm{D} + \vec{\mathrm{D}})}$	calculation of model		
MOLECULAR THEORY	REPAIR-MISREPAIR LIN REP / QUADMIS	$\mathbf{S} = e^{-\alpha D} [1 + (\alpha DT / \epsilon)]^{\epsilon}$	parameters from clinical		
MOLECULAR THEORY	REPAIR-MISREPAIR LIN REP / MIS	$S = e^{-\alpha D} [1 + (\alpha D / \epsilon)]^{\epsilon \Phi}$	data		
MOLECULAR THEORY	LETHAL-POTENTIALLY LETHAL	$S = \exp[-N_{\text{TOT}}[1 + \frac{N_{\text{PL}}}{\epsilon (1 - e^{-\epsilon})}]$	BAtr)] ^e]		
MOLECULAR THEORY	LETHAL-POTENTIALLY LETHAL – LOW DOSE	$S = e^{-\eta_{AC} D}$			
MOLECULAR THEORY	LETHAL-POTENTIALLY LETHAL – HIGH DOSE	$\label{eq:action} \boxed{ - \ln [\ S(t)] = (\eta_{AC} + \eta_{AB}) D - \epsilon ln [1 + (\eta_A + \eta_{AB}) D - \epsilon ln]]]]]$	$_{\rm B}{\rm D}/\epsilon)(1-{\rm e}^{-\epsilon{\rm B}{\rm A}{\rm tr}})]$		
MOLECULAR THEORY	LETHAL-POTENTIALLY LETHAL – LQ APPROX	$\label{eq:stars} \boxed{ - \ln [\ S(t)] = (\eta_{AC} + \eta_{AB} e^{-\varepsilon B A tr}) D + \left(\eta^2_{AB} \right. }$	$(2\epsilon)(1 - e^{-\epsilon B A tr})^2 D^2]$		
Maria Grazia Dia INEN Conova					

Maria Grazia Pia, *INFN Genova*

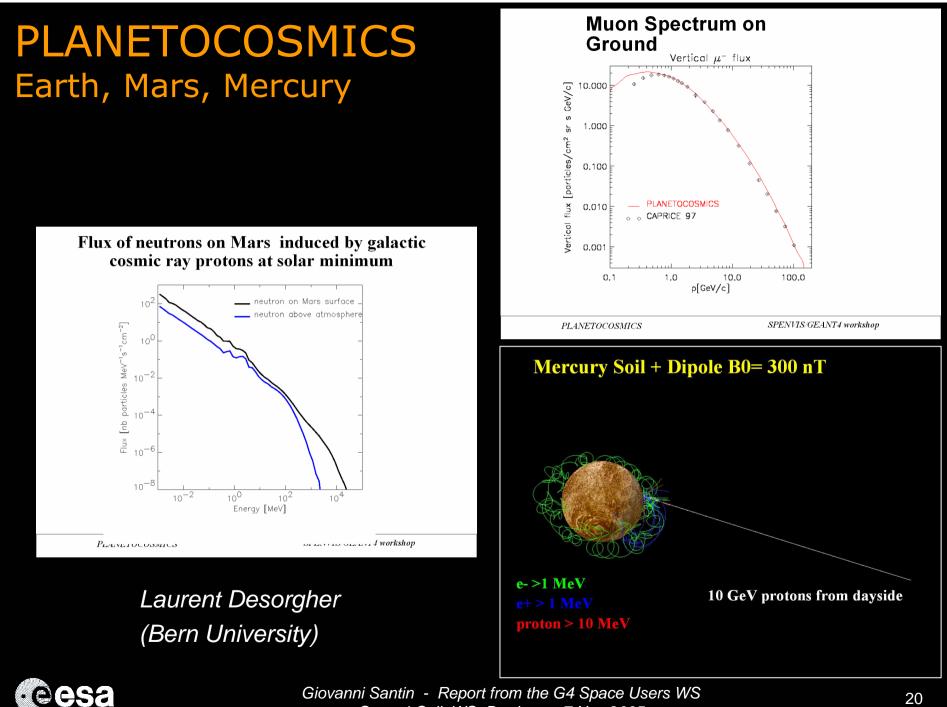
Review of the work in progress^{2/5}

Total cross sections


	Electrons	Protons (H+)	Hydrogen (H)	Alpha (He++)	He+	He		
Elastic	Brenner (7.5 - 200 eV) Emfietzoglou (> 200 ev)	Neglected	Neglected	Neglected	Neglected	Neglected		
Excitation	Emfietzoglou	Miller and Green	Neglected	Miller and Green	Miller and Green	Miller and Green		
	Bom (7 ev – 10 keV)	Bom (100 eV – 10 MeV)	Hegiceteu	(1 keV – 15 MeV)	(1 keV – 15 MeV)	(1 keV – 15 MeV)		
Charge decrease	Does not apply	Dingfelder (100 eV – 2 MeV)	Does not apply	To be done	To be done	Does not apply		
Charge increase	Does not apply	Does not apply	Miller and Green Dingfelder (0.1 Kev – 100 MeV)	Does not apply	To be done	To be done		
Ionization	To be done	Rudd (0.1 - 500 keV)	d (0.1 - 500 keV) Rudd (0.1 - 100 MeV)		To be done	To be done		
	TO be done	To be done (> 500 keV)	1 (0.1 - 100 We V)	To be done	To be done	ro be done		
Final states								
	Electrons	Protons (H+)	Hydrogen (H)	Alpha (He++)	He+	He		
Elastic	Brenner (7.5 - 200 eV) Emfietzoglou (> 200 ev)	Neglected	Neglected	Neglected	Neglected	Neglected		
Excitation	Emfietzoglou	Miller and Green	Neglected	Miller and Green	Miller and Green	Miller and Green		
	Bom (7 ev – 10 keV)	Bom (100 eV – 10 MeV)	regiected	(1 keV – 15 MeV)	(1 keV – 15 MeV)	(1 keV – 15 MeV)		
Charge decrease	Does not apply	Dingfelder (100 eV – 2 MeV)	Does not apply	To be done	To be done	Does not apply		
Charge increase	Does not apply	Does not apply	Miller and Green Dingfelder (0.1 Kev – 100 MeV)	Does not apply	To be done	To be done		
Ionization	To be done	Rudd (0.1 - 500 keV)	Rudd (0.1 – 100 MeV)	To be done	To be done	To be done		

RESTEC Fluxes and doses on Mars

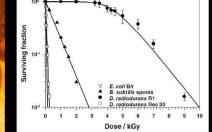
Simulation Setup


The geometry implemented in Geant 4 program takes into account:

RESTEC

Giovanni Santin - Report from the G4 Space Users WS Geant4 Coll. WS, Bordeaux, 7 Nov 2005 eesa

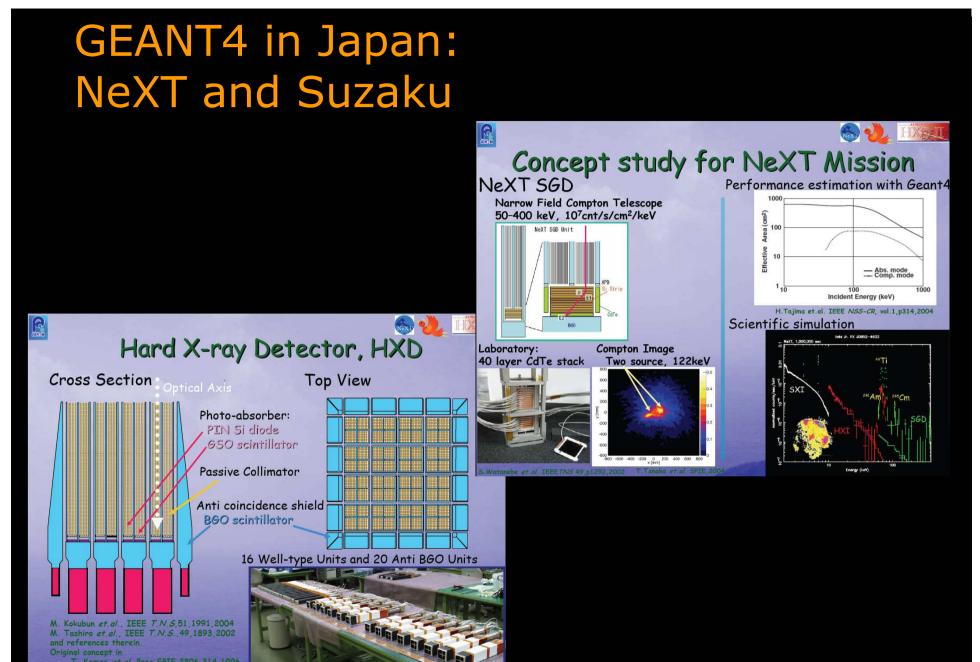
Geant4 Coll. WS, Bordeaux, 7 Nov 2005


Radioresistant bacteria

Lewis Dartnell

CoMPLEX (Centre for Mathematics and Physics in the Life Sciences and Experimental Biology)

University College London, UK


Deinococcus radiodurans

Survival curves of D. radiodurans, B. subtilis, and E. coli

Life on Mars?

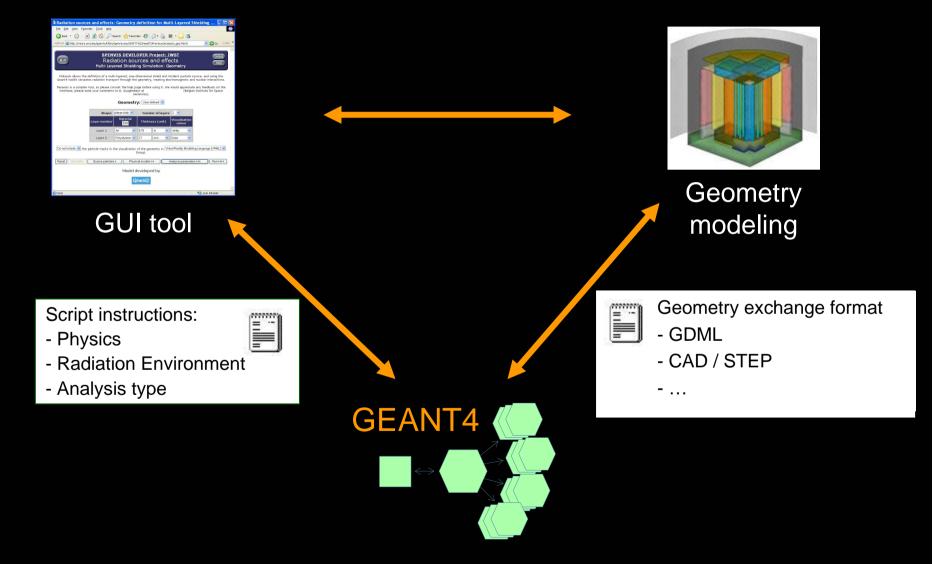
Using Geant4 to model the subsurface radiation environment

The Model **Refugial Life** T4 workshop. Leuven, Primary radiation energy spectrum • Could extremophile life persist *beneath* the surface, within pockets of liquid Temp Density water ...? · Deep hot Biosphere on Earth. Andrew Coates, MSSL · Methane plumes detected seeping out of Joł ground. Flux of proton Flux of neutron ntin - Report from the G secondaries nt4 Coll. WS. Bordeaux. ۲ ۲۰۰۰ ۲۰۰۰

Original concept in T. Kamae et. al. Proc. SPIE, 2806, 314, 1996

General purpose GEANT4 web interface

Input G4Macro template	Dynamic web form				
# #Define the reference date #			Bfield Definition		
/MAGCOS/BFIELD/SetStartDate P_Year P_Month P_Day P_Ho	Year	2005			
# #Define the magnetic field	Month	1 🔳			
# /MAGCOS/BFIELD/SetGeomagneticFieldModel P InternalField	Day	1 🖃			
/MAGCOS/BFIELD/SetExternalFieldModel P_ExternalField	Hour	0 🖃			
/MAGCOS/SOURCE/SetPositionVector GEO P Xpos P Ypos P	Minute	0 💌			
	Second	0 💌			
Output G4Macro file	InternalField	IGRF 🗾			
# #Define the reference date	ExternalField	NOFIELD			
# /MAGCOS/BFIELD/SetStartDate 2005 1 1 0 0 0	Xpos	2.3			
#	Ypos	1			
#Define the magnetic field #			0		
		LengthUnit	Re 🗾		
/MAGCOS/SOURCE/SetPositionVector GEO 2.3 1 0 Re			Submit Query		
			face Prototype		
Set of PHP functions	•G4 coding needed only in the main file: G4Ulsession* session				


= new G4UIGainPHPServer();

Giovanni Santin - Report from the G4 Space Users WS Geant4 Coll. WS, Bordeaux, 7 Nov 2005

Laurent Desorgher (Bern University)

Interface GEANT4 to CAD GUI (or CAD GUI to GEANT\$)

Conclusions

- Fruitful meeting of 2 communities (SPENVIS / GEANT4)
- Increasing use of GEANT4
- Usability
 Ready-to-use tools and interfaces
- Physics

Improved EM models Need for further upgrade in hadronics

http://geant4.esa.int http://www.spenvis.oma.be

Announcement: GDML session

- J.McCormick is trying to organize a parallel informal discussion session to discuss present use, trends, future developments related to GDML
- Please join if interested

