
Detector Description

Gabriele.Cosmo@cern.ch

http://cern.ch/geant4

Detector DescriptionDetector Description

Part I The Basics

Part II Logical and physical volumes

Part III Solids, touchables

Part IV Visualization attributes
& Optimization technique

Part V Advanced features

PART I

Detector Description: Detector Description:
the Basicsthe Basics

MaterialsMaterials

- The System of units & constants

- Definition of elements

- Materials and mixtures

- Some examples …

Unit systemUnit system
Geant4 has no default unit. To give a number,
unit must be “multiplied” to the number.

for example :
G4double width = 12.5*m;

G4double density = 2.7*g/cm3;

If no unit is specified, the internal G4 unit will be used,
but this is discouraged !
Almost all commonly used units are available.
The user can define new units.
Refer to CLHEP: SystemOfUnits.h

Divide a variable by a unit you want to get.
G4cout << dE / MeV << “ (MeV)” << G4endl;

System of UnitsSystem of Units
System of units are defined in CLHEP, based on:

millimetre (mm), nanosecond (ns), Mega eV (MeV), positron
charge (eplus) degree Kelvin (kelvin), the amount of
substance (mole), luminous intensity (candela), radian
(radian), steradian (steradian)

All other units are computed from the basic ones.
In output, Geant4 can choose the most appropriate unit to
use. Just specify the category for the data (Length, Time,
Energy, etc…):

G4cout << G4BestUnit(StepSize, “Length”);

StepSize will be printed in km, m, mm or … fermi, depending
on its value

Defining new unitsDefining new units
New units can be defined directly as constants,
or (suggested way) via G4UnitDefinition.

G4UnitDefinition (name, symbol, category, value)

Example (mass thickness):
G4UnitDefinition (“grammpercm2”, “g/cm2”,

“MassThickness”, g/cm2);
The new category “MassThickness” will be registered
in the kernel in G4UnitsTable

To print the list of units:
From the code
G4UnitDefinition::PrintUnitsTable();

At run-time, as UI command:
Idle> /units/list

Definition of MaterialsDefinition of Materials

Different kinds of materials can be
defined:

isotopes <> G4Isotope
elements <> G4Element
molecules <> G4Material
compounds and mixtures <> G4Material

Attributes associated:
temperature, pressure, state, density

Isotopes, Elements and MaterialsIsotopes, Elements and Materials

G4Isotope and G4Element describe the
properties of the atoms:

Atomic number, number of nucleons, mass of
a mole, shell energies
Cross-sections per atoms, etc…

G4Material describes the macroscopic
properties of the matter:

temperature, pressure, state, density
Radiation length, absorption length, etc…

Elements & IsotopesElements & Isotopes

Isotopes can be assembled into elements
G4Isotope (const G4String& name,

G4int z, // atomic number
G4int n, // number of nucleons

G4double a); // mass of mole

… building elements as follows:
G4Element (const G4String& name,

const G4String& symbol, // element symbol
G4int nIso); // # of isotopes

G4Element::AddIsotope(G4Isotope* iso, // isotope

G4double relAbund); // fraction of atoms
// per volume

Material of one elementMaterial of one element

Single element material
G4double density = 1.390*g/cm3;
G4double a = 39.95*g/mole;
G4Material* lAr =
new G4Material("liquidArgon",z=18.,a,density);

Prefer low-density material to
vacuum

Material: moleculeMaterial: molecule
A Molecule is made of several elements
(composition by number of atoms):

a = 1.01*g/mole;
G4Element* elH =

new G4Element("Hydrogen",symbol="H",z=1.,a);
a = 16.00*g/mole;
G4Element* elO =

new G4Element("Oxygen",symbol="O",z=8.,a);
density = 1.000*g/cm3;
G4Material* H2O =

new G4Material("Water",density,ncomp=2);
H2O->AddElement(elH, natoms=2);
H2O->AddElement(elO, natoms=1);

Material: compound Material: compound
Compound: composition by fraction of mass

a = 14.01*g/mole;

G4Element* elN =
new G4Element(name="Nitrogen",symbol="N",z= 7.,a);

a = 16.00*g/mole;
G4Element* elO =

new G4Element(name="Oxygen",symbol="O",z= 8.,a);
density = 1.290*mg/cm3;
G4Material* Air =

new G4Material(name="Air",density,ncomponents=2);
Air->AddElement(elN, 70.0*perCent);
Air->AddElement(elO, 30.0*perCent);

Material: mixtureMaterial: mixture

Composition of compound materials

G4Element* elC = …; // define “carbon” element
G4Material* SiO2 = …; // define “quartz” material
G4Material* H2O = …; // define “water” material

density = 0.200*g/cm3;
G4Material* Aerog =

new G4Material("Aerogel",density,ncomponents=3);
Aerog->AddMaterial(SiO2,fractionmass=62.5*perCent);
Aerog->AddMaterial(H2O ,fractionmass=37.4*perCent);

Aerog->AddElement (elC ,fractionmass= 0.1*perCent);

Example: gasExample: gas
It may be necessary to specify
temperature and pressure

(dE/dx computation affected)

G4double density = 27.*mg/cm3;
G4double temperature = 325.*kelvin;
G4double pressure = 50.*atmosphere;

G4Material* CO2 =
new G4Material(“CarbonicGas", density, ncomponents=2

kStateGas, temperature, pressure);
CO2->AddElement(C,natoms = 1);
CO2->AddElement(O,natoms = 2);

Example: vacuumExample: vacuum
Absolute vacuum does not exist. It is a gas at
very low density !

Cannot define materials composed of multiple elements
through Z or A, or with ρ = 0.

G4double atomicNumber = 1.;
G4double massOfMole = 1.008*g/mole;
G4double density = 1.e-25*g/cm3;
G4double temperature = 2.73*kelvin;
G4double pressure = 3.e-18*pascal;
G4Material* Vacuum =

new G4Material(“interGalactic", atomicNumber,
massOfMole, density, kStateGas,
temperature, pressure);

Describing a detectorDescribing a detector

- Detector geometry modeling

- The basic concepts: solids & volumes

Describe your detectorDescribe your detector
Derive your own concrete class from
G4VUserDetectorConstruction abstract base class.
Implementing the method Construct():

Modularize it according to each detector component or
sub-detector:

• Construct all necessary materials
• Define shapes/solids required to describe the geometry
• Construct and place volumes of your detector geometry

Define sensitive detectors and identify detector volumes
which to associate them
Associate magnetic field to detector regions
Define visualization attributes for the detector elements

Creating a Detector VolumeCreating a Detector Volume
Start with its Shape & Size

Box 3x5x7 cm, sphere R=8m

Add properties:
material, B/E field,
make it sensitive

Place it in another volume
in one place
repeatedly using a function

Solid

Logical-Volume

Physical-Volume

Define detector geometryDefine detector geometry

G4Box

G4Tubs

G4VSolid G4VPhysicalVolume

G4Material

G4VSensitiveDetector

G4PVPlacement

G4PVParameterised

G4VisAttributes

G4LogicalVolume

Three conceptual layers
G4VSolid -- shape, size
G4LogicalVolume -- daughter physical volumes,

material, sensitivity, user limits, etc.
G4VPhysicalVolume -- position, rotation

Define detector geometryDefine detector geometry
Basic strategy
G4VSolid* pBoxSolid =
new G4Box(“aBoxSolid”, 1.*m, 2.*m, 3.*m);

G4LogicalVolume* pBoxLog =
new G4LogicalVolume(pBoxSolid, pBoxMaterial,

“aBoxLog”, 0, 0, 0);
G4VPhysicalVolume* aBoxPhys =
new G4PVPlacement(pRotation,

G4ThreeVector(posX, posY, posZ),
pBoxLog, “aBoxPhys”, pMotherLog,
0, copyNo);

A unique physical volume which represents the experimental
area must exist and fully contains all other components

The world volume

PART II

Detector Description: Detector Description:
Logical and Physical VolumesLogical and Physical Volumes

G4LogicalVolumeG4LogicalVolume
G4LogicalVolume(G4VSolid* pSolid, G4Material* pMaterial,

const G4String& name, G4FieldManager* pFieldMgr=0,
G4VSensitiveDetector* pSDetector=0,
G4UserLimits* pULimits=0,
G4bool optimise=true);

Contains all information of volume except position:
• Shape and dimension (G4VSolid)
• Material, sensitivity, visualization attributes
• Position of daughter volumes
• Magnetic field, User limits
• Shower parameterisation

Physical volumes of same type can share a logical volume.
The pointers to solid and material must be NOT null
Once created it is automatically entered in the LV store
It is not meant to act as a base class

G4VPhysicalVolumeG4VPhysicalVolume
G4PVPlacement 1 Placement = One Volume

• A volume instance positioned once in a mother volume

G4PVParameterised 1 Parameterised = Many Volumes
• Parameterised by the copy number

• Shape, size, material, position and rotation can be
parameterised, by implementing a concrete class of
G4VPVParameterisation.

• Reduction of memory consumption
• Currently: parameterisation can be used only for volumes

that either a) have no further daughters or b) are identical in
size & shape.

G4PVReplica 1 Replica = Many Volumes
• Slicing a volume into smaller pieces (if it has a symmetry)

Physical VolumesPhysical Volumes

repeated

placement

Placement: it is one positioned volume

Repeated: a volume placed many times
can represent any number of volumes
reduces use of memory.
Replica

• simple repetition, similar to G3 divisions
Parameterised

A mother volume can contain either
many placement volumes OR
one repeated volume

G4PVPlacementG4PVPlacement
G4PVPlacement(G4RotationMatrix* pRot,

const G4ThreeVector& tlate,
G4LogicalVolume* pCurrentLogical,
const G4String& pName,
G4LogicalVolume* pMotherLogical,
G4bool pMany,
G4int pCopyNo);

Single volume positioned relatively to the mother volume
In a frame rotated and translated relative to the coordinate
system of the mother volume

Three additional constructors:
A simple variation: specifying the mother volume as a pointer
to its physical volume instead of its logical volume.
Using G4Transform3D to represent the direct rotation and
translation of the solid instead of the frame
The combination of the two variants above

Parameterised Physical VolumesParameterised Physical Volumes
User written functions define:

the size of the solid (dimensions)
• Function ComputeDimensions(…)

where it is positioned (transformation)
• Function ComputeTransformations(…)

Optional:
the type of the solid

• Function ComputeSolid(…)

the material
• Function ComputeMaterial(…)

Limitations:
Applies to simple CSG solids only
Daughter volumes allowed only for special cases

Very powerful
Consider parameterised volumes as “leaf” volumes

Uses of Uses of ParameterisedParameterised VolumesVolumes

Complex detectors
with large repetition of
volumes
• regular or irregular

Medical applications
the material in animal tissue is
measured
• cubes with varying material

G4PVParameterisedG4PVParameterised
G4PVParameterised(const G4String& pName,

G4LogicalVolume* pCurrentLogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4int nReplicas,
G4VPVParameterisation* pParam);

Replicates the volume nReplicas times using the
parameterisation pParam, within the mother volume
The positioning of the replicas is dominant along the
specified Cartesian axis

If kUndefined is specified as axis, 3D voxelisation for
optimisation of the geometry is adopted

Represents many touchable detector elements differing in
their positioning and dimensions. Both are calculated by
means of a G4VPVParameterisation object
Alternative constructor using pointer to physical volume
for the mother

ParameterisationParameterisation
example example -- 11

G4VSolid* solidChamber = new G4Box("chamber", 100*cm, 100*cm, 10*cm);

G4LogicalVolume* logicChamber =

new G4LogicalVolume(solidChamber, ChamberMater, "Chamber", 0, 0, 0);

G4double firstPosition = -trackerSize + 0.5*ChamberWidth;

G4double firstLength = fTrackerLength/10;

G4double lastLength = fTrackerLength;

G4VPVParameterisation* chamberParam =

new ChamberParameterisation(NbOfChambers, firstPosition,

ChamberSpacing, ChamberWidth,

firstLength, lastLength);

G4VPhysicalVolume* physChamber =

new G4PVParameterised("Chamber", logicChamber, logicTracker,

kZAxis, NbOfChambers, chamberParam);

Use kUndefined for activating 3D voxelisation for optimisation

ParameterisationParameterisation
example example -- 22
class ChamberParameterisation : public G4VPVParameterisation

{

public:

ChamberParameterisation(G4int NoChambers, G4double startZ,

G4double spacing, G4double widthChamber,

G4double lenInitial, G4double lenFinal);

~ChamberParameterisation();

void ComputeTransformation (const G4int copyNo,

G4VPhysicalVolume* physVol) const;

void ComputeDimensions (G4Box& trackerLayer, const G4int copyNo,

const G4VPhysicalVolume* physVol) const;

}

ParameterisationParameterisation
example example -- 33

void ChamberParameterisation::ComputeTransformation

(const G4int copyNo, G4VPhysicalVolume* physVol) const

{

G4double Zposition= fStartZ + (copyNo+1) * fSpacing;

G4ThreeVector origin(0, 0, Zposition);

physVol->SetTranslation(origin);

physVol->SetRotation(0);

}

void ChamberParameterisation::ComputeDimensions

(G4Box& trackerChamber, const G4int copyNo,

const G4VPhysicalVolume* physVol) const

{

G4double halfLength= fHalfLengthFirst + copyNo * fHalfLengthIncr;

trackerChamber.SetXHalfLength(halfLength);

trackerChamber.SetYHalfLength(halfLength);

trackerChamber.SetZHalfLength(fHalfWidth);

}

Replicated Physical VolumesReplicated Physical Volumes

repeated

The mother volume is sliced into replicas, all
of the same size and dimensions.
Represents many touchable detector elements
differing only in their positioning.
Replication may occur along:

Cartesian axes (X, Y, Z) – slices are considered
perpendicular to the axis of replication

• Coordinate system at the center of each replica
Radial axis (Rho) – cons/tubs sections centered
on the origin and un-rotated

• Coordinate system same as the mother
Phi axis (Phi) – phi sections or wedges, of
cons/tubs form

• Coordinate system rotated such as that the X axis
bisects the angle made by each wedge

G4PVReplicaG4PVReplica
G4PVReplica(const G4String& pName,

G4LogicalVolume* pCurrentLogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4int nReplicas,
const G4double width,
const G4double offset=0);

Alternative constructor: using pointer to physical volume for the
mother
An offset can only be associated to a mother offset along the
axis of replication
Features and restrictions:

Replicas can be placed inside other replicas
Normal placement volumes can be placed inside replicas, assuming
no intersection/overlaps with the mother volume or with other
replicas
No volume can be placed inside a radial replication
Parameterised volumes cannot be placed inside a replica

a daughter volume
to be replicated

mother volume

Replica Replica –– axis, width, offsetaxis, width, offset

Cartesian axes - kXaxis, kYaxis, kZaxis

offset shall not be used

Center of n-th daughter is given as

-width*(nReplicas-1)*0.5+n*width

Radial axis - kRaxis

Center of n-th daughter is given as

width*(n+0.5)+offset

Phi axis - kPhi

Center of n-th daughter is given as

width*(n+0.5)+offset

offset

width

offset

width

width

ReplicationReplication
exampleexample

G4double tube_dPhi = 2.* M_PI;
G4VSolid* tube =
new G4Tubs("tube", 20*cm, 50*cm, 30*cm, 0., tube_dPhi*rad);

G4LogicalVolume * tube_log =
new G4LogicalVolume(tube, Ar, "tubeL", 0, 0, 0);

G4VPhysicalVolume* tube_phys =
new G4PVPlacement(0,G4ThreeVector(-200.*cm, 0., 0.*cm),

"tubeP", tube_log, world_phys, false, 0);
G4double divided_tube_dPhi = tube_dPhi/6.;
G4VSolid* divided_tube =
new G4Tubs("divided_tube", 20*cm, 50*cm, 30*cm,

-divided_tube_dPhi/2.*rad, divided_tube_dPhi*rad);
G4LogicalVolume* divided_tube_log =
new G4LogicalVolume(divided_tube, Ar, "div_tubeL", 0, 0, 0);

G4VPhysicalVolume* divided_tube_phys =
new G4PVReplica("divided_tube_phys", divided_tube_log, tube_log,

kPhi, 6, divided_tube_dPhi);

Divided Physical VolumesDivided Physical Volumes

Implemented as “special” kind of
parameterised volumes

Applies to CSG-like solids only (box, tubs, cons,
para, trd, polycone, polyhedra)
Divides a volume in identical copies along one
of its axis (copies are not strictly identical)

• e.g. - a tube divided along its radial axis
• Offsets can be specified

The possible axes of division vary according
to the supported solid type
Represents many touchable detector elements
differing only in their positioning
G4PVDivision is the class defining the division

The parameterisation is calculated
automatically using the values provided in input

PART III

Detector Description:Detector Description:
Solids & TouchablesSolids & Touchables

G4VSolidG4VSolid
Abstract class. All solids in
Geant4 derive from it

Defines but does not
implement all functions
required to:

• compute distances to/from
the shape

• check whether a point is
inside the shape

• compute the extent of the
shape

• compute the surface
normal to the shape at a
given point

Once constructed, each
solid is automatically
registered in a specific solid
store

SolidsSolids
Solids defined in Geant4:

CSG (Constructed Solid Geometry) solids
• G4Box, G4Tubs, G4Cons, G4Trd, …
• Analogous to simple GEANT3 CSG

solids
Specific solids (CSG like)
• G4Polycone, G4Polyhedra, G4Hype, …
• G4TwistedTubs, G4TwistedTrap, …

BREP (Boundary REPresented) solids
• G4BREPSolidPolycone,

G4BSplineSurface, …
• Any order surface

Boolean solids
• G4UnionSolid, G4SubtractionSolid, …

CSG: G4Tubs, G4ConsCSG: G4Tubs, G4Cons
G4Tubs(const G4String& pname, // name

G4double pRmin, // inner radius
G4double pRmax, // outer radius
G4double pDz, // Z half length
G4double pSphi, // starting Phi
G4double pDphi); // segment angle

G4Cons(const G4String& pname, // name
G4double pRmin1, // inner radius -pDz
G4double pRmax1, // outer radius -pDz
G4double pRmin2, // inner radius +pDz
G4double pRmax2, // outer radius +pDz
G4double pDz, // Z half length
G4double pSphi, // starting Phi
G4double pDphi); // segment angle

Specific CSG Solids: Specific CSG Solids:
G4PolyconeG4Polycone

G4Polycone(const G4String& pName,

G4double phiStart,
G4double phiTotal,

G4int numRZ,
const G4double r[],
const G4double z[]);

numRZ - numbers of corners in the r,z space
r, z - coordinates of corners

Additional constructor using planes

BREP SolidsBREP Solids

BREP = Boundary REPresented Solid
Listing all its surfaces specifies a solid

e.g. 6 squares for a cube

Surfaces can be
planar, 2nd or higher order

• elementary BREPS
Splines, B-Splines,
NURBS (Non-Uniform B-Splines)
• advanced BREPS

Few elementary BREPS pre-defined
box, cons, tubs, sphere, torus, polycone, polyhedra

Advanced BREPS built through CAD systems

BREPS:BREPS:
G4BREPSolidPolyhedraG4BREPSolidPolyhedra

G4BREPSolidPolyhedra(const G4String& pName,
G4double phiStart,
G4double phiTotal,
G4int sides,
G4int nZplanes,
G4double zStart,

const G4double zval[],
const G4double rmin[],
const G4double rmax[]);

sides - numbers of sides of each polygon in the x-y plane
nZplanes - numbers of planes perpendicular to the z axis
zval[] - z coordinates of each plane
rmin[], rmax[] - Radii of inner and outer polygon at each plane

Boolean SolidsBoolean Solids

Solids can be combined using boolean operations:
G4UnionSolid, G4SubtractionSolid, G4IntersectionSolid

Requires: 2 solids, 1 boolean operation, and an (optional)
transformation for the 2nd solid

• 2nd solid is positioned relative to the coordinate system of the
1st solid

Example:
G4Box box(“Box", 20, 30, 40);
G4Tubs cylinder(“Cylinder”, 0, 50, 50, 0, 2*M_PI); // r: 0 -> 50

// z: -50 -> 50
// phi: 0 -> 2 pi

G4UnionSolid union("Box+Cylinder", &box, &cylinder);
G4IntersectionSolid intersect("Box Intersect Cylinder", &box, &cylinder);
G4SubtractionSolid subtract("Box-Cylinder", &box, &cylinder);

Solids can be either CSG or other Boolean solids
Note: tracking cost for the navigation in a complex Boolean
solid is proportional to the number of constituent solids

G4UnionSolid G4IntersectionSolidG4SubtractionSolid

How to identify a volume uniquely?How to identify a volume uniquely?

• Need to identify a volume uniquely
• Is a physical volume pointer enough? NO!

• Touchable

TouchableTouchable55

44

44

44

11

55 11

22

3344

pPVpPV

LaterLater

StepStep

22

55

What can a touchable do ?What can a touchable do ?

All generic touchables can reply to these
queries:

positioning information (rotation, position)
• GetTranslation(), GetRotation()

Specific types of touchable also know:
(solids) - their associated shape: GetSolid()
(volumes) - their physical volume: GetVolume()
(volumes) - their replication number: GetReplicaNumber()
(volumes hierarchy or touchable history):

• info about its hierarchy of placements: GetHistoryDepth()
• At the top of the history tree is the world volume

• modify/update touchable: MoveUpHistory(), UpdateYourself()
• take additional arguments

Benefits of Benefits of TouchablesTouchables in trackin track

••A1A1 ••A2A2

Permanent information stored
to avoid implications with a “live” volume tree

Full geometrical information available
to processes
to sensitive detectors
to hits

Touchable Touchable -- 11
G4Step has two G4StepPoint objects as its starting
and ending points. All the geometrical information of
the particular step should be got from “PreStepPoint”

Geometrical information associated with G4Track is basically
same as “PostStepPoint”

Each G4StepPoint object has:
position in world coordinate system
global and local time
material
G4TouchableHistory for geometrical information

• Copy-number, transformations

Handles (or smart-pointers) to touchables are
intrinsically used. Touchables are reference counted

Touchable Touchable -- 22

G4TouchableHistory has information
of geometrical hierarchy of the point

G4Step* aStep = ..;

G4StepPoint* preStepPoint = aStep->GetPreStepPoint();

G4TouchableHandle theTouchable =

preStepPoint->GetTouchableHandle();

G4int copyNo = theTouchable->GetReplicaNumber();

G4int motherCopyNo = theTouchable->GetReplicaNumber(1);

G4ThreeVector worldPos = preStepPoint->GetPosition();

G4ThreeVector localPos = theTouchable->GetHistory()->

GetTopTransform().TransformPoint(worldPos);

Copy numbersCopy numbers
Suppose a calorimeter is made
of 4x5 cells

and it is implemented by
two levels of replica.

In reality, there is only one
physical volume object for each
level. Its position is
parameterized by its copy
number
To get the copy number of
each level, suppose what
happens if a step belongs to
two cells

CopyNo = 0

CopyNo = 1

CopyNo = 2

CopyNo = 3

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

Remember geometrical information in G4Track is identical to
"PostStepPoint". You cannot get the collect copy number for
"PreStepPoint" if you directly access to the physical volume

Use touchable to get the proper copy number, transform matrix,…

PART IV

Detector Description:Detector Description:
Visualization attributes & Optimization techniqueVisualization attributes & Optimization technique

Detector DescriptionDetector Description
Visualization attributes & Optimization techniqueVisualization attributes & Optimization technique

Visualization attributes
Optimization technique & tuning

Visualization of DetectorVisualization of Detector

Each logical volume can have associated a
G4VisAttributes object

Visibility, visibility of daughter volumes
Color, line style, line width
Force flag to wire-frame or solid-style mode

For parameterised volumes, attributes can be
dynamically assigned to the logical volume
Lifetime of visualization attributes must be at
least as long as the objects they’re assigned to

Visualization of Hits and Visualization of Hits and
TrajectoriesTrajectories

Each G4VHit concrete class must have an
implementation of Draw() method.

Colored marker
Colored solid
Change the color of detector element

G4Trajectory class has a Draw() method.
Blue : positive
Green : neutral
Red : negative
You can implement alternatives by yourself

Smart voxelsSmart voxels

For each mother volume
a one-dimensional virtual division is performed

• the virtual division is along a chosen axis
• the axis is chosen by using an heuristic

Subdivisions (slices) containing same volumes are gathered
into one
Subdivisions containing many volumes are refined

• applying a virtual division again using a second Cartesian axis
• the third axis can be used for a further refinement, in case

Smart voxels are computed at initialisation time
When the detector geometry is closed
Do not require large memory or computing resources
At tracking time, searching is done in a hierarchy of virtual
divisions

Detector description tuningDetector description tuning

Some geometry topologies may require ‘special’
tuning for ideal and efficient optimisation

for example: a dense nucleus of volumes included in
very large mother volume

Granularity of voxelisation can be explicitly set
Methods Set/GetSmartless() from G4LogicalVolume

Critical regions for optimisation can be detected
Helper class G4SmartVoxelStat for monitoring time spent in
detector geometry optimisation

• Automatically activated if /run/verbose greater than 1

Percent Memory Heads Nodes Pointers Total CPU Volume
------- ------ ----- ----- -------- --------- -----------

91.70 1k 1 50 50 0.00 Calorimeter
8.30 0k 1 3 4 0.00 Layer

Visualising Visualising voxelvoxel structurestructure

The computed voxel structure can be visualized
with the final detector geometry

Helper class G4DrawVoxels
Visualize voxels given a logical volume
• G4DrawVoxels::DrawVoxels(const G4LogicalVolume*)

Allows setting of visualization attributes for
voxels
• G4DrawVoxels::SetVoxelsVisAttributes(…)

useful for debugging purposes
Can also be done through a visualization
command at run-time:
• /vis/scene/add/logicalVolume <logical-volume-name> [<depth>]

Customising optimisationCustomising optimisation

Detector regions may be excluded from
optimisation (ex. for debug purposes)

Optional argument in constructor of G4LogicalVolume or
through provided set methods
• SetOptimisation/IsToOptimise()

Optimisation is turned on by default

Optimisation for parameterised volumes can be
chosen

Along one single Cartesian axis
• Specifying the axis in the constructor for G4PVParameterised

Using 3D voxelisation along the 3 Cartesian axes
• Specifying in kUndefined in the constructor for G4PVParameterised

PART V

Detector Description: Detector Description:
Advanced featuresAdvanced features

Detector DescriptionDetector Description
Advanced featuresAdvanced features

Grouping volumes
Reflections of volumes and hierarchies
Detector regions
User defined solids
Debugging tools

Grouping volumesGrouping volumes

To represent a regular pattern of positioned
volumes, composing a more or less complex
structure

structures which are hard to describe with simple
replicas or parameterised volumes
structures which may consist of different shapes

Assembly volume
acts as an envelope for its daughter volumes
its role is over once its logical volume has been placed
daughter physical volumes become independent copies
in the final structure

G4AssemblyVolumeG4AssemblyVolume

G4AssemblyVolume(G4LogicalVolume* volume,
G4ThreeVector& translation,
G4RotationMatrix* rotation);

Helper class to combine logical volumes in arbitrary way
Participating logical volumes are treated as triplets

• logical volume, translation, rotation
Imprints of the assembly volume are made inside a mother
logical volume through G4AssemblyVolume::MakeImprint(…)
Each physical volume name is generated automatically

• Format: av_WWW_impr_XXX_YYY_ZZZ
• WWW – assembly volume instance number
• XXX – assembly volume imprint number
• YYY – name of the placed logical volume in the assembly
• ZZZ – index of the associated logical volume

Generated physical volumes (and related transformations)
are automatically managed (creation and destruction)

Assembly of volumes:Assembly of volumes:
example example --11

// Define a plate
G4VSolid* PlateBox = new G4Box("PlateBox", plateX/2., plateY/2., plateZ/2.);
G4LogicalVolume* plateLV = new G4LogicalVolume(PlateBox, Pb, "PlateLV", 0, 0, 0);

// Define one layer as one assembly volume
G4AssemblyVolume* assemblyDetector = new G4AssemblyVolume();

// Rotation and translation of a plate inside the assembly
G4RotationMatrix Ra; G4ThreeVector Ta;

// Rotation of the assembly inside the world
G4RotationMatrix Rm;

// Fill the assembly by the plates
Ta.setX(caloX/4.); Ta.setY(caloY/4.); Ta.setZ(0.);
assemblyDetector->AddPlacedVolume(plateLV, G4Transform3D(Ra,Ta));
Ta.setX(-1*caloX/4.); Ta.setY(caloY/4.); Ta.setZ(0.);
assemblyDetector->AddPlacedVolume(plateLV, G4Transform3D(Ra,Ta));
Ta.setX(-1*caloX/4.); Ta.setY(-1*caloY/4.); Ta.setZ(0.);
assemblyDetector->AddPlacedVolume(plateLV, G4Transform3D(Ra,Ta));
Ta.setX(caloX/4.); Ta.setY(-1*caloY/4.); Ta.setZ(0.);
assemblyDetector->AddPlacedVolume(plateLV, G4Transform3D(Ra,Ta));

// Now instantiate the layers
for(unsigned int i = 0; i < layers; i++) {

// Translation of the assembly inside the world
G4ThreeVector Tm(0,0,i*(caloZ + caloCaloOffset) - firstCaloPos);
assemblyDetector->MakeImprint(worldLV, G4Transform3D(Rm,Tm));

}

Assembly of volumes:Assembly of volumes:
example example --22

Reflecting volumesReflecting volumes

G4ReflectedSolid

utility class representing a solid shifted from its
original reference frame to a new symmetric one
the reflection (G4Reflect[X/Y/Z]3D) is applied as a
decomposition into rotation and translation

G4ReflectionFactory

Singleton object using G4ReflectedSolid for
generating placements of reflected volumes
Provides tools to detect/return a reflected volume

Reflections can be applied to CSG and specific solids

Reflecting hierarchies of volumes Reflecting hierarchies of volumes -- 11

G4ReflectionFactory::Place(…)
Used for normal placements:

i. Performs the transformation decomposition
ii. Generates a new reflected solid and logical volume

Retrieves it from a map if the reflected object is already created
iii. Transforms any daughter and places them in the given

mother
iv. Returns a pair of physical volumes, the second being a

placement in the reflected mother
G4PhysicalVolumesPair
Place(const G4Transform3D& transform3D, // the transformation

const G4String& name, // the actual name
G4LogicalVolume* LV, // the logical volume
G4LogicalVolume* motherLV, // the mother volume
G4bool noBool, // currently unused
G4int copyNo) // optional copy number

Reflecting hierarchies of volumes Reflecting hierarchies of volumes -- 22

G4ReflectionFactory::Replicate(…)

Creates replicas in the given mother volume
Returns a pair of physical volumes, the second being a
replica in the reflected mother

G4PhysicalVolumesPair

Replicate(const G4String& name, // the actual name
G4LogicalVolume* LV, // the logical volume

G4LogicalVolume* motherLV, // the mother volume
Eaxis axis // axis of replication
G4int replicaNo // number of replicas

G4int width, // width of single replica

G4int offset=0) // optional mother offset

Cuts by RegionCuts by Region

Geant4 has had a unique production threshold (‘cut’) expressed in
length (i.e. minimum range of secondary)

For all volumes
Possibly different for each particle.

Yet appropriate length scales can vary greatly between different
areas of a large detector

E.g. a vertex detector (5 μm) and a muon detector (2.5 cm)
Having a unique (low) cut can create a performance penalty

Geant4 allows for several cuts
Globally or per particle
Enabling the tuning of production thresholds at the level of a
sub-detector, i.e. region
Cuts are applied only for gamma, electron and positron and only
for processes which have infrared divergence

Detector RegionDetector Region

Concept of region:
Set of geometry volumes,
typically of a sub-system

• barrel + end-caps of the
calorimeter;

• “Deep” areas of support
structures can be a region.

Or any group of volumes
A set of cuts in range is associated
to a region

a different range cut for each
particle among gamma, e-, e+
is allowed in a region

Region
B

Region
B

Default
Region Region B

Region B

Region A

CC

World Volume - Default RegionRegion and cutRegion and cut

Each region has its unique set of cuts.
World volume is recognized as the
default region. The default cuts
defined in Physics list are used for it.

User is not allowed to define a region
to the world volume or a cut to the
default region

A logical volume becomes a root
logical volume once it is assigned to a
region.

All daughter volumes belonging to the
root logical volume share the same
region (and cut), unless a daughter
volume itself becomes to another root

Important restriction :
No logical volume can be shared by
more than one regions, regardless of
root volume or not

Root logical - Region A

Root logical
- Region B

GGE (Graphical Geometry Editor)GGE (Graphical Geometry Editor)

Implemented in JAVA, GGE is a graphical
geometry editor compliant to Geant4. It allows
to:

Describe a detector geometry including:
• materials, solids, logical volumes, placements

Graphically visualize the detector geometry using a
Geant4 supported visualization system, e.g. DAWN
Store persistently the detector description
Generate the C++ code according to the Geant4
specifications

GGE can be downloaded from Web as a separate
tool:

http://erpc1.naruto-u.ac.jp/~geant4/

Visualizing detector geometry treeVisualizing detector geometry tree

Built-in commands defined to display
the hierarchical geometry tree

As simple ASCII text structure
Graphical through GUI (combined with GAG)
As XML exportable format

Implemented in the visualization module
As an additional graphics driver

G3 DTREE capabilities provided and more

Computing volumes and massesComputing volumes and masses

Geometrical volume of a generic solid or boolean
composition can be computed from the solid:

G4double GetCubicVolume();

Overall mass of a geometry setup (subdetector)
can be computed from the logical volume:

G4double GetMass(G4Bool forced=false,
G4Material* parameterisedMaterial=0);

Debugging Debugging
geometriesgeometries

An overlapping volume is a contained volume which
actually protrudes from its mother volume

Volumes are also often positioned in a same volume with the
intent of not provoking intersections between themselves.
When volumes in a common mother actually intersect
themselves are defined as overlapping

Geant4 does not allow for malformed geometries
The problem of detecting overlaps between volumes is
bounded by the complexity of the solid models description
Utilities are provided for detecting wrong positioning

Graphical tools
Kernel run-time commands

Debugging tools: DAVIDDebugging tools: DAVID

DAVID is a graphical debugging tool for
detecting potential intersections of volumes
Accuracy of the graphical representation can
be tuned to the exact geometrical
description.

physical-volume surfaces are automatically
decomposed into 3D polygons
intersections of the generated polygons are
parsed.
If a polygon intersects with another one, the
physical volumes associated to these polygons
are highlighted in color (red is the default).

DAVID can be downloaded from the Web as
external tool for Geant4

http://geant4.kek.jp/GEANT4/vis/DAWN/About_DAVID.html

Debugging runDebugging run--time commandstime commands

Built-in run-time commands to activate verification tests
for the user geometry. Tests can be applied recursively to
all depth levels (may require CPU time!): [recursion_flag]

geometry/test/run [recursion_flag] or
geometry/test/grid_test [recursion_flag]

to start verification of geometry for overlapping regions based on
a standard grid setup

geometry/test/cylinder_test [recursion_flag]
shoots lines according to a cylindrical pattern

geometry/test/line_test [recursion_flag]
to shoot a line along a specified direction and position

geometry/test/position and geometry/test/direction
to specify position & direction for the line_test

Resolution/dimensions of grid/cylinders can be tuned

Debugging runDebugging run--time commandstime commands -- 22

Example layout:

GeomTest: no daughter volume extending outside mother detected.
GeomTest Error: Overlapping daughter volumes

The volumes Tracker[0] and Overlap[0],
both daughters of volume World[0],
appear to overlap at the following points in global coordinates: (list truncated)

length (cm) ----- start position (cm) ----- ----- end position (cm) -----
240 -240 -145.5 -145.5 0 -145.5 -145.5

Which in the mother coordinate system are:
length (cm) ----- start position (cm) ----- ----- end position (cm) -----

. . .
Which in the coordinate system of Tracker[0] are:

length (cm) ----- start position (cm) ----- ----- end position (cm) -----
. . .

Which in the coordinate system of Overlap[0] are:
length (cm) ----- start position (cm) ----- ----- end position (cm) -----

. . .

Debugging tools: OLAPDebugging tools: OLAP

Uses tracking of neutral particles to
verify boundary crossing in opposite
directions
Stand-alone batch application

Provided as extended example
Can be combined with a graphical
environment and GUI (ex. Qt library)
Integrated in the CMS Iguana Framework

Debugging tools: OLAPDebugging tools: OLAP

