

Geant4 Electromagnetic Physics V.Ivanchenko, thanks to M.Maire

*Physics categories
*Electromagnetic physics
*Standard EM package
*PhysicsList and Cuts
*Lowenergy EM package
*Particle EM interactions with matter

Geant4 physics processes

* Physics is described via abstract interface called process associated with particles

* Process provides Interaction Lenths, StepLimits, and DoIt methods

- *** Process** active *AlongStep*, *PostStep*, *AtRest*
- Distinction between process and model one process may includes many models
- Generation of final state is well separated (for many processes is independed) from the access and use of cross sections and from tracking

Geant4 physics categories

There are following categories:

- Decay
- #Electromagnetic
- Hadronic
- Optical
- Transportation
- Parameterisations

Electromagnetic Physics

- * Processes of gamma, electron, and positron interactions with media was traditionally called "*Electromagnetic Processes*" (EM)
- Hadron interaction with atomic electrons are also EM
- *Hadron photo- and electro- production are simulated in framework of G4 hadronic physics

EM packages

- * Standard basic set of processes for HEP
- Muons basic set of muon processes for HEP
- * *Xrays* xray and optical proton production
- Lowenergy alternative set of processes with low energy extension of gamma, electron, and hadron EM physics

- *Highenergy* EM processes important above 100 GeV
- * **Optical** Optical photon interaction
- **Utils common classes** for other EM packages:
 - Interfaces
 - Energy loss and range table builders
 - Useful utilities

Standard EM Physics

The projectile is assumed to have the energy E_{kin} > 1keV

* The atomic electrons are quasi-free – their binding energies neglected (except some corrections at low energies)

The atomic nucleus are fixed – no recoil
The matter is described as homogeneous,

isotropic, amorphous

Standard EM Processes

★ Gamma

- Photo-electric effect
- Compton scattering
- e⁺e⁻ pair production
- $\mu^+ \mu^-$ pair production
- ★ Electron and positron
 - Ionization
 - Bremsstrahlung
 - Positron annihilation

***** Muons

- Ionization
- Bremsstrahlung
- e⁺e⁻ pair production
- ***** Hadrons
 - Ionization
- ***** Ions
 - Ionization
- Multiple scattering

Standard EM Physics

- Standard G4 physics was based on G3 knowledge/experience
- Review of G3 models have been done
- More precise theories were used if possible/ necessary
- Extension to higher energies in progress

Landau-Pomeranchuk-Migdal Effect for bremsstrahlung

Standard EM Physics

- Standard package of EM interactions was created for HEP applications
- It is well adequate for instrumental studies, space and medical applications
- Examples of different usage of the Standard package:
 - \$G4INSTALL/examples/novice
 - \$G4INSTALL/examples/extended/electromagnetic
 - \$G4INSTALL/examples/extended/medical
- Examples of PhysicsList in the directory \$G4INSTALL/physics_list/electromagnetic

Energy Cuts for EM Physics

- Energy spectrum of δelectrons ~ 1/T²
- * Energy spectrum of
 Bremsstahlung ~ 1/ω
- Huge number of low
 energy e- and gammas
 cannot be tracked
 efficiently by any Monte
 Carlo
- ★ Cuts should be used

Geant4 cuts

- For a typical process G4Ionisation production threshold T_c subdivides continues and discrete part of energy loss:
 dE T_c dq(t)
- * Energy loss

$$\frac{dE}{dx} = n \int_{0}^{T_c} t \frac{d\sigma(t)}{dt} dt$$

 $\star \delta$ -electron production

$$\sigma = \int_{T_c}^{T_{\max}} \frac{d\sigma}{dt} dt$$

- ***** By default energy is deposited at the step
- * Energy loss can be used optionally for generation of δ -electrons under the threshold (subcutoff) and for fluorescence and Auger–electrons emission

Effect of production thresholds

In Geant3

Remarks about Geant4 cuts

- The use of production threshold is mandatory only for Standard ionization and bremsstahlung
- Other processes can use or ignore G4 cuts
- Alternative mechanism is UserLimits, which can be defined in a given G4LogicalVolume:
 - Maximum step size
 - Maximum track length
 - Maximum track time
 - Minimun kinetic energy
 - Minimum range

PhysicsList

It is one of the « mandatory user classes »; – Defined in source/run

★ Defines the three pure virtual methods:

- ConstructParticle()
- ConstructProcesse()
- SetCuts()
- Concrete PhysicsList needs to inherit from G4VUserPhysicsList or G4VModularPhysicsList
- For interactivity G4UserPhysicsListMessenger can be used to handle PhysicsList parameters

Example: Gamma processes

Discrete processes - only PostStep actions;

- Use function AddDiscreteProcess;
- pmanager is the G4ProcessManager of the gamma;
- Assume the transportation has been set by AddTransportation;
- * Code sample:

// Construct processes for gamma:

pmanager->AddDiscreteProcess(new G4GammaConversion());
pmanager->AddDiscreteProcess(new G4ComptonScattering());
pmanager->AddDiscreteProcess(new G4PhotoElectricEffect());

Example: electron and positron

Main interface with definition of the process order: G4ProcessManager::AddProcess(G4VProcess*, int orderAtRest, int orderAlongStep, int orderPostStep); NOTE: if (order < 0) – process inactive; else – the order of DoIt method; inverse order of GetInteractionLength // add processes for e⁻ G4ProcessManager* pmanager = G4Electron::Electron()->GetProcessManager(); **pmanager->AddProcess** (new G4MultipleScattering, -1, 1, 1); pmanager->AddProcess (new G4eIonisation, -1, 2, 2); **pmanager->AddProcess** (new G4eBremsstrahlung, -1, 3, 3); // add processes for e⁺ pmanager = G4Positron::Positron()->GetProcessManager(); **pmanager->AddProcess** (new G4MultipleScattering, -1, 1, 1); **pmanager->AddProcess** (new G4eIonisation, -1, 2, 2); **pmanager->AddProcess** (new G4eBremsstrahlung, -1, 3, 3); **pmanager->AddProcess** (new G4eplusAnnihilation, 1, -1, 4);

***** Validity down to **250 eV**

- 250 eV is a "suggested" lower limit
- data libraries down to 10 eV
- -1 < Z < 100

Exploit evaluated data libraries (from LLNL):

- EADL (Evaluated Atomic Data Library)
- EEDL (Evaluated Electron Data Library)
- EPDL97 (Evaluated Photon Data Library)

V.Ivanchenko

- ***** Compton scattering
- * Polarised Compton
- * Rayleigh scattering
- * Photoelectric effect
- * Pair production
- * Bremsstrahlung
- * Electron ionisation
- * Hadron ionisation
- * Atomic relaxation
- * Set of Penelope models (new)

- It is relatively new package
- Development is driven by requirements which come from medicine and space research
- * There are also users in HEP instrumentation
- There is a long list of new development to be implemented including physics in 10-250 eV energy range

- Ionization is different for particles and antiparticles (Barkas effect)
- Ionization at low energy depends on molecular shell structure
- Chemical formula can be assign to the material – will be effective for heights of the Bragg peak of ionization

Geant4 low energy EM physics (contingency M.G.Pia)

Induced X-ray line emission: indicator of target composition (~100 µm surface layer)

X-Ray Surveys of Solar System Bodies

V.Ivanchenko

Geant4 low energy EM physics (contingency M.G.Pia)

 Atomic relaxations are implement for ionization processes and photoelectric effect

Cross sections of shell ionization are used

 Fluorescence and Auger electrons are produced

*To use G4 lowenergy package user has to substitute standard process in the PhysicsList by corresponding lowenergy:

- G4hIonisation \rightarrow G4hLowEnergyIonisation
- G4eIonisation \rightarrow G4LowEnergyIonisation

The environment variable G4LEDATA should be defined

Particle EM interactions with matter for the Standard package

- ***** Gamma interaction
- Electron and positron interactions
- Heavy charged particles interactions
- All interactions are needed to understand the details of radiation treatment

- ***** Atomic photoelectric effect
- Coherent scattering (Rayleigh)
- Incoherent scattering (Compton effect)
- Pair production, nuclear field
- Pair production, electron field
- ★ Data from NIST

http://physics.nist.gov/PhysRefData V.Ivanchenko EM Physics, November, 2005

Photoelectric Effect

* Reaction

- $-\gamma + A \rightarrow e^- + A^*$
- * Discontinuity
 - grow up of cross section when $E_{\gamma} \rightarrow E_{bour}$
- K-shell dominates above
- ★ Parameterization:

$$\sigma(Z, E_{\gamma}) = \sum_{i=1,4} \frac{c_i(Z, E_{\gamma})}{E_{\gamma}^i}$$

http://physics.nist.gov/PhysRefData http://www-cxro.lbl.gov/optical_constants

1 MeV 1 Photon energy

10 MeV 100 MeV 1 GeV

" Ph

V.Ivanchenko

100

10

0.1

0.01

 10^{-5}

10⁻⁶ 10 eV

100 eV

1 keV

10 keV

100 keV

Absorption

lengthλ (g/cm²)

10 GeV 100 GeV

Photoelectric Effect

***** Differential cross section for K-shell

- Phys. Rev. 113, 514, 1959
- $-\beta, \gamma, \theta$ photoelectron parameters
- Transverse photoelectron emission

$$\frac{d\sigma}{d\cos\vartheta} \sim \frac{\sin\vartheta^2}{\left(1 - \beta\cos\vartheta\right)^4} \left[1 + \frac{1}{2}\gamma(\gamma - 1)(\gamma - 2)(1 - \beta\cos\vartheta)\right]$$

V.Ivanchenko

Coherent (Reyleigh) Scattering

***** Differential cross

 $\frac{d\sigma}{d(\cos\vartheta)} = \pi r_e^2 \left(1 + \cos\vartheta^2\right) F(Z,x) \Big|^2, x = \sin(\vartheta/2)/\lambda$

***** For Z > 2 and

$$F(x, Z) = 4\pi \int_0^\infty r^2 \rho(r, Z) \frac{\sin(4\pi xr)}{4\pi xr} dr$$

 Parameterization of atomic form-factors from

J.H.Hubbell, J.Phys.Chem.Ref.Data 8, 69, 1979

V.Ivanchenko

Compton Scattering

***** The quasi-free scattering $\gamma + e \rightarrow \gamma' + e'$ *****Klein-Nishina formula (no polarization): $\frac{d\sigma}{dk'} = \frac{\pi r_e^2}{mc^2} \frac{Z}{\kappa^2} \left[\epsilon + \frac{1}{\epsilon} - \frac{2}{\kappa} \left(\frac{1-\epsilon}{\epsilon} \right) + \frac{1}{\kappa^2} \left(\frac{1-\epsilon}{\epsilon} \right)^2 \right]$ k' energy of the scattered photon ; $\epsilon = k'/k$ r_e classical electron radius $\kappa k/mc^2$ **★** Low energy limit: $\frac{d\sigma}{dk'} = \left|\frac{d\sigma}{dk'}\right|_{KN} \times S(k,k')$ \star S(k, k') – scattering function depending on atomic shell structure

V.Ivanchenko

Compton Scattering

$$\sigma(k) = \int_{k'_{min}=k/(2\kappa+1)}^{k'_{max}=k} \frac{d\sigma}{dk'} dk'$$

Kinematics is defined by final energy of $\boldsymbol{\gamma}$

$$\sigma(k) = 2\pi r_e^2 Z \left[\left(\frac{\kappa^2 - 2\kappa - 2}{2\kappa^3} \right) \ln(2\kappa + 1) + \frac{\kappa^3 + 9\kappa^2 + 8\kappa + 2}{4\kappa^4 + 4\kappa^3 + \kappa^2} \right]$$

limits

$$\begin{array}{ll} k \to \infty : & \sigma \mbox{ goes to } 0 : \ \sigma(k) \sim \pi \ r_e^2 \ Z \ \frac{\ln 2\kappa}{\kappa} \\ & k \to 0 : & \sigma \to \frac{8\pi}{3} \ r_e^2 \ Z \ (\mbox{classical Thomson cross section}) \end{array}$$

Structure function Saturate Thomson Cross section ~k²

V.Ivanchenko

Compton Scattering for Measurement of Electron Beam Polarization at SLC, SLAC

Compton effect in different kinematics

Gamma Conversion

- * Born approximation (Bethe-Haitler): $\sigma(Z, E_{\gamma}) = Z(Z+1)\alpha r_e^2 \frac{2\pi}{3} \left(\frac{k-2}{k}\right)^3 F(k), k = \frac{E_{\gamma}}{mc^2}$
- * Necessary corrections:
 - Coulomb corrections (next after Born orders)
 - The screening of the field of the nucleus
 - Pair creation in the field of atomic electrons
 - LPM effect the formation length suppression
 - Practical parameterization:

J.H.Hubbell, J.Phys.Chem.Ref.Data 9, 1023, 1980

Gamma Conversion – Differential Cross Section

high energies regime : $E_{\gamma} \gg m_e c^2 / (\alpha Z^{1/3})$

Above few GeV the energy spectrum formula becomes simple :

$$\frac{d\sigma}{d\epsilon} \Big]_{Tsai} \approx 4\alpha r_{\epsilon}^2 \times \left\{ \left[1 - \frac{4}{3}\epsilon(1-\epsilon) \right] \left(Z^2 \left[L_{rad} - f(Z) \right] + ZL'_{rad} \right) \right\}$$

where

 $\begin{array}{ll} E_{\gamma} & \mbox{energy of the incident photon} \\ E & \mbox{total energy of the created } e^+ \ (\mbox{or } e^-) \ ; & \mbox{$\epsilon = E/E_{\gamma}$} \\ L_{rad}(Z) & \mbox{ln}(184.15/Z^{1/3}) & \mbox{$(for $z \ge 5$)$} \\ L_{rad}'(Z) & \mbox{ln}(1194/Z^{2/3}) & \mbox{$(for $z \ge 5$)$} \\ f(Z) & \mbox{Coulomb correction function} \end{array}$

- Bethe-Heitler formula with corrections from
 - Y.S. Tsai, Rev. Mod.
 Phys. 46, 815, 1974; 49, 421, 1977
- ***** The synthesis
 - S.M. Seitler and
 M.J.Berger, Int. J. of
 Appl. Rad. 35, 665, 1984

V.Ivanchenko

Gamma Conversion (PDG plots)

33

Radiation length

The characteristic distance in a media directly connected with the gamma

$$\frac{1}{X_0} = 4\alpha r_e^2 \frac{N_A}{A} \left\{ Z^2 \left[L_{\text{rad}} - f(Z) \right] + Z L_{\text{rad}}' \right\}$$

***** Approximation

Y.S. Tsai, Rev. Mod. Phys. 46, 81

Element	Ζ	L_{rad}	$L'_{ m rad}$
Н	1	5.31	6.144
He	2	4.79	5.621
Li	3	4.74	5.805
Be	4	4.71	5.924
Others	>4	$\ln(184.15 Z^{-1/3})$	$\ln(1194 Z^{-2/3})$

V.Ivanchenko

Longitudinal EM shower profile is solve the second second

EM shower profile:

V.Ivanchenko

EM Physics, November, 2....

Bremsstrahlung

Inverse process to gamma conversion
 For E > 1 MeV dominate process for e⁺ and e⁻
 First Born approximation by Bethe-Heitler
 Corrections:

- Screening of the nucleus field
- Bremsstrahlung on atomic electrons
- Next terms after Born
- Polarization of media (dielectric suppression)
- LPM formation length suppression

V.Ivanchenko

EM Physics, November, 2005

Bremsstrahlung

Tsai approximation of angular distribution:

$$\frac{d\sigma}{dx} = Cx\left(e^{-ax} + 27e^{-3ax}\right),$$
$$a = 0.625, x = \frac{E\vartheta}{m}$$

- ★ Is precise for E>1 MeV
- Is not applicable below 100 keV
- Two extra models inside the Lowenergy package

Tsai angular distribution fits the data

Ionization of Protons and Electrons

- Protons below 1 MeV are highly ionizing and have still enough energy
- Bragg peak of ionization near the end of the heavy particle trajectory
- Parameterization of stopping powers below 1 MeV are done using experimental data
 - A.Allisy, ICRU 49
 - http://physics.nist.gov/PhysRefData

Heavy Particle Ionization

Corrected Bethe-Bloch formula (A.Allisy, ICRU 49, 1993)

$$-\frac{dE}{dx} = 4\pi N_e r_0^2 \frac{z^2}{\beta^2} \left(\ln \frac{2m_e c^2 \beta^2 \gamma^2}{I} - \frac{\beta^2}{2} \left(1 - \frac{T_c}{T_{\text{max}}} \right) - \frac{C}{Z} + \frac{G - \delta - F}{2} + zL_1 + z^2 L_2 \right)$$

- $T_c cut energy (T_c < T_{max})$
- T_{max} kinematical max energy
- I mean ionization potential
- C shell correction (increasing for low energies)
- G Mott correction (important for ions)
- $-\delta$ density correction (collective media effect)
- F finite size correction (important for ions)
- L_1 Barkas correction (difference in ranges of μ^+ and μ^-)
- L₂- Bloch correction

V.Ivanchenko

Heavy Particle Ionization Continue

 $T_{\rm max} = \frac{2m_ec^2\,\beta^2\gamma^2}{1+2\gamma m_e/M+(m_e/M)^2}$

Density effect

$$\delta/2 \to \ln(\hbar\omega_p/I) + \ln\beta\gamma - 1/2$$

 $\delta = \begin{cases} 2(\ln 10)x - \overline{C} & \text{if } x \ge x_1; \\ 2(\ln 10)x - \overline{C} + a(x_1 - x)^k & \text{if } x_0 \le x < x_1; \\ 0 & \text{if } x < x_0 \text{ (nonconductors)}; \\ \delta_0 10^{2(x - x_0)} & \text{if } x < x_0 \text{ (conductors)} \end{cases}$

Differential cross section of δ-electron production Binding energy is neglected

$$\frac{d\sigma}{dT} \sim \frac{z^2}{\beta^2} \frac{F(T)}{T^2}, F(T)_{S=0} = \left(1 - \beta^2 \frac{T}{T_{\text{max}}}\right)$$

V.Ivanchenko

Heavy Particle Ionization Continue

- Energy loss is also called "Stopping Power" (see ICRU)
- For T< 1 MeV strong shell dependence of stopping power
 - Ionization grow up as $1/\beta^2$
 - Max when atomic electrons velocity is about particle velocity
 - Screening effect saturate energy loss

Proton stopping power

V.Ivanchenko

Electron/Positron Ionization H. Messel and D.F. Crowford, Pergamon Press, Oxford, 1970

$$\frac{dE}{dx}\Big]_{T < T_{eut}} = 2\pi r_e^2 mc^2 n_{el} \frac{1}{\beta^2} \left[\ln \frac{2(\gamma+1)}{(I/mc^2)^2} + F^{\pm}(\tau,\tau_{up}) - \delta \right]$$

classical electron radius: $e^2/(4\pi\epsilon_0 mc^2)$ r_{e} mc^2 mass energy of the electron electron density in the material n_{el} mean excitation energy in the material Ι E/mc^2 γ β^2 $1 - (1/\gamma^2)$ $\gamma - 1$ τ T_{cut} minimum energy cut for δ -ray production T_{cut}/mc^2 τ_c maximum energy transfer: τ for e^+ , $\tau/2$ for $e^ \tau_{max}$ $\min(\tau_c, \tau_{max})$ τ_{up} density effect function. δ

V.Ivanchenko

Fluctuations of Energy Loss

- In "thin" absorbers mean energy loss and the most probable energy loss are different significantly
- In "thick" absorbers,
 when energy loss about
 kinetic energy the
 distribution is Gaussian
- Fluctuations in energy loss provides struggling of particle range

H.Bichsel, Rev. Mod. Phys., 60, 663, 1988

Particle Identification

- Energy loss of heavy charged particles are function of β
- In magnetic
 spectrometers particle
 momentum and sign of
 its charge can be
 measured
- Combine with the dE/dx measurement in gases for identification

V.Ivanchenko

Muon Interactions with Matter

***** Basic processes:

Fe

- Ionisation
- Bremsstrahlung
- Production of e⁺e-

ionisation

 10^{2}

Muon energy E, GeV

Muon-nuclear interaction

Total muon energy loss

total

nuclear tireastic)

10³

Courtesy R.Kokoulin

v.1vапспепко

 10^{2}

10¹

10[°]

10

10¹

< dE / dx >, MeV cm² / g

Muon interactions

Muon cross sections: curves indicate areas, in which a process give >50% contribution

- * At moderate energies δelectrons
- For high energy e⁺e⁻ production dominates
- At highest transfers ε/E >
 0.1 dominates
 bremsstrahlung
 (catastrophic energy loss)

EM Physics, Novemł

Muon Stopping Power (PDG)

48

Multiple Scattering

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} z \sqrt{x/X_0} \Big[1 + 0.038 \ln(x/X_0) \Big]$$

V.L.Highland, NIM 129, 497, 1975 Is accurate for $10^{-3} < x/X_0 < 100$

- Is applied if particle does many soft collisions with atomic electrons and nuclei
- This is an approximation for small angles with accuracy ~10%
- Hard Reserford
 collisions are not
 taken into account

V.Ivanchenko

Multiple Scattering Illustrations

Energy dependence

10 π^+ of 200 MeV and 1 GeV crossing 10 cm of Aluminium.

Angle distributions central part + tail

V.Ivanchenko

Multiple scattering model of L.Urban

Back scattering

Transverse displacement

V.Ivanchenko

Positron Annihilation

Takes place on-fly and at rest

Monochromatic gammas in rest frame

 Key process for positron tomography

***** Cross section:

 $\sigma(Z,E) = \frac{Z\pi r_e^2}{\gamma+1} \left[\frac{\gamma^2+4\gamma+1}{\gamma^2-1} \ln\left(\gamma+\sqrt{\gamma^2-1}\right) - \frac{\gamma+3}{\sqrt{\gamma^2-1}} \right]^{-1}$

EM Physics, November, 2005

High energy EM processes

EM background due to high energy EM interaction with media:

- $e^{+} \rightarrow \mu^{+}\mu^{-}(\sigma \sim Z)$ $e^{+} \rightarrow \pi^{+}\pi^{-}(\sigma \sim Z)$
- Visible at LEP and High at SLC
- Of concern for linear colliders

V.Ivanchenko

Conclusion remarks

- "Classical" quantum mechanics, its relativistic extension, and the theory of atom allow to describe particle interactions with matter
- Geant4 offer a complete set of physics processes and models for simulation of EM physics
- Standard packages more oriented to HEP but applicable for medical and other applications
- Lowenergy package provides alterative models allowing simulation of atomic effects

