

Physics List Introduction

* Geant4 requires the user to decide:

— which particles are required for a given application
— which physics processes are to be assigned to each particle

— what the secondary particle production cuts are (electromagnetic
processes only)

* All this 1s done in the Physics List

* Must be invoked 1n the user's main() after detector
construction and before generator action:

int main() {
G4RunManager™ runMan = new G4RunManager;
runMan->SetUserInitialization(new MyDetectorConstruction);

runMan->SetUserInitialization(new MyPhysicsList);
runMan->SetUserAction(new MyPrimaryGeneratorAction);

Physics List Class

* All physics lists are derived from G4V UserPhysicsList

* It has three methods the user must implement:

— ConstructParticle()

— ConstructProcess()
— SetCuts()

* Other methods provided:

— AddTransportation() - required or else particles go nowhere
— DumpList() - print list of registered particles
— DumpCutValues() - print list of range cuts for particles

How to Build a Physics List — Step 1

* Choose the physics

— which particles at which energies

— what physics processes are important

* Our example: space radiation environment

— cosmic rays: 85% protons, 14% alpha, + C, N, O; most effects in 100
MeV to 20 GeV range

— Van Allen belts: electrons up to 10 MeV, protons ~10 — 100 MeV
— solar particles: protons up to a few GeV

— diffuse gamma background: 0.1 — 200 MeV

— need electromagnetic, hadronic and photo-nuclear processes

How to Build a Physics List — Step 2

* Implement ConstructParticle method in your physics list

— void MyPhysicsList::ConstructParticle()
{

G4Gamma::GammaDefinition();
G4Electron::ElectronDefinition();
G4Positron::PositronDefinition();
G4Proton::ProtonDefinition();
G4Neutron::NeutronDefinition();

G4 Alpha::AlphaDefinition();
G4Genericlon::GenericlonDefintion();

}
e Or use the ConstructParticle method of the classes:
— G4LeptonConstructor

— G4MesonConstructor

— G4BaryonConstructor

How to Build a Physics List — Step 3a

Implement ConstructProcess method in your physics list

— void MyPhysicsList::ConstructProcess()

{
ConstructEM();

ConstructHadronic();
ConstructPhotoNuclear();

J

Here we have divided the processes in our example into
categories for convenience - now implement each one

Before implementing ConstructEM(), decide which processes
are needed:

— gamma conversion, photo-electric effect, Compton scattering,

— multiple Coulomb scattering, 1onization, bremsstrahlung, positron
annihilation

How to Build a Physics List — Step 3a

Can use “standard” or “low-energy” processes

— standard generally faster and cover higher energies

— low energy more accurate at low incident energies where atomic shell
effects are important

For this example we choose “‘standard” processes

Hence the work for ConstructEM() 1s already done

— Look at novice example NO3

— Copy from ExNO3PhysicsList::ConstructEM()

See advanced examples for the use of low energy processes

How to Build a Physics List — Step 3b

* Now implement ConstructPhotoNuclear() method

* For hadronic and photo-nuclear reactions we not only need to
choose processes, but also models

— for photo-nuclear we choose G4PhotoNuclearProcess and
G4GammaNuclearReactionModel

— this was easy because there 1s only one photo-nuclear process
available

— also there 1s only one model available with which to implement this
process for gamma energies below 200 MeV

— we would also need to select a cross section data set, but this comes
by default with the process (in most cases)

How to Build a Physics List — Step 3b

* physics list code for diffuse gamma background (photo-
nuclear):

— void MyPhysicsList::ConstructPhotoNuclear()
{

G4ParticleDefinition™ photon = G4Gamma::Gamma();
G4ProcessManager® pman = photon->GetProcessManager();

// Inelastic photon scattering

G4PhotoNuclearProcess* process = new G4PhotoNuclearProcess;
G4GammaNuclearReaction® model =

new G4GammalNuclearReaction;
process->RegisterMe(model);
pman->AddDiscreteProcess(process);

How to Build a Physics List — Step 3¢

Now implement ConstructHadronic() method

Now there are more process and models to choose from
— need elastic and inelastic hadron scattering from nuclei

For protons choose:
— G4HadronElasticProcess with G4LElastic model

— (G4ProtonlnelasticProcess with G4LEProtonlInelastic model
For alphas choose:

— G4HadronElasticProcess with G4LElastic model
— G4AlphalnelasticProcess with G4LEAlphalnelastic model

All of the above have default cross sections

How to Build a Physics List — Step 3¢

* physics list code for cosmic rays (hadronic):

— void MyPhysicsList::ConstructHadronic()
{

G4ParticleDefinition™ proton = G4Proton::Proton();
G4ProcessManager™® pman = proton->GetProcessManager();

// Elastic scattering

G4HadronElasticProcess™ eproc = new G4HadronElasticProcess;
G4LElastic* emodel = new G4LElastic;
eproc->RegisterMe(emodel);
pman->AddDiscreteProcess(eproc);

// Inelastic scattering

G4ProtonlnelasticProcess™ iproc = new G4ProtonInelasticProcess;

How to Build a Physics List — Step 3¢

* physics list code for cosmic rays (continued):

— G4LEProtonlnelastic* imodel = new G4LEProtonlnelastic;
iproc->RegisterMe(imodel);
pman->AddDiscreteProcess(iproc);

/[alpha

G4ParticleDefinition™ alpha = G4 Alpha:: Alpha();
G4ProcessManager® pman = alpha->GetProcessManager();

// Elastic scattering. Same model as proton (G4LElastic)
G4HadronElasticProcess™ aproc = new G4HadronFElasticProcess;

aproc->RegisterMe(emodel);
pman->DiscreteProcess(paroc);

How to Build a Physics List — Step 3¢

* physics list code for cosmic rays (continued):

— [/ Inelastic scattering. Not the same model as for proton.

G4 AlphalnelasticProcess™ aiproc = new G4AlphalnelasticProcess;
G4LEAlphalnelastic* aimodel = new G4LEAlphalnelastic;
aiproc->RegisterMe(aimodel);
pman->AddDiscreteProcess(aproc);

— exercise for the student:

* extend physics list to include neutrons, pions, and kaons
* continue to use LEP models for elastic and inelastic scattering

e extend physics list to high energies by using HEP models

Modular Physics Lists

* As physics requirements become more realistic, the
physics list gets much longer

— 1t may be useful to break it up into smaller files

— you may want to define subsets of physics processes which
correspond to a given particle or type of interaction

— you may want to switch on/off a set of processes
* Modular physics lists allow this
— derive your physics list from class G4VModularPhysicsList

— create “sub-physics lists” or modules by deriving from
G4VPhysicsConstructor

— register sub-physics list to main physics list:

* RegisterPhysics(G4VPhysicsConstuctor™ fPhysCons)

Organizing A Modular Physics List

* choose physics domains:
— physics of protons, physics of gammas, etc.
* example:

— MyModPhysList::MyModPhysList() : G4VModularPhysicsList()
{

defaultCutValue = 1.0*mm:;

RegisterPhysics(new GammaPhysics(“gamma”));
RegisterPhysics(new LeptonPhysics(“lepton”));
RegisterPhysics(new HadronPhysics(“hadron”™));
RegisterPhysics(new DecayPhysics(“‘decay’™));

j

//Set cut values for gamma and lepton processes

void MyModPhysList::SetCuts()
{ SetCutsWithDefault(); } //use default value above

Organizing A Modular Physics List

* now write the individual physics constructors

* sample header:

— class LeptonPhysics : public G4 VPhysicsConstructor

{
public:
LeptonPhysics(const G4String& name = “lepton”);
virtual ~LeptonPhysics();

virtual void ConstructParticle();
virtual ConstructProcess();

j

* For each physics constructor, particles and processes are
constructed just as in the non-modular case

* AddTransportation method called automatically in modular lists

Best Guess Physics Lists

Geant4 provides a set of already-written physics lists which
can be used for a number of applications

These lists were developed as a “best guess™ of the physics
required for a given use case

— application areas include high energy physics, medical, radiation
protection

— written as modular physics lists

They are a good starting point, but the user should always
validate a chosen list to make sure it does the right thing

To use, first build the physics list libraries (parallel to Geant4
source directory), then invoke the physics list in your main():

— runManager->SetUserInitialization(new prebuiltPhysList);

Summary

* Physics lists are where the user defines all the particles and
processes required for a given application

* Users must take care to include all the important particles,
processes, models and cross sections

* The user has three choices:

— develop a “simple” physics list derived from G4V UserPhysicsList in
which all particles and processes are defined

— develop a modular physics list derived from G4VModularPhysicsList
in which particle and process definition can be grouped according to a
particular subset of the relevant physics

— use the already-written physics lists provided along with the Geant4
source code

