
Physics Lists

Dennis Wright (SLAC)

Geant4 Tutorial
Bordeaux

3-5 November 2005

Outline

� Physics list introduction
� Step-by-step example for building a simple physics list
� Modular physics lists
� Best guess physics lists

Physics List Introduction
� Geant4 requires the user to decide:

� which particles are required for a given application
� which physics processes are to be assigned to each particle
� what the secondary particle production cuts are (electromagnetic

processes only)
� All this is done in the Physics List
� Must be invoked in the user's main() after detector

construction and before generator action:

int main() {
 G4RunManager* runMan = new G4RunManager;
 runMan->SetUserInitialization(new MyDetectorConstruction);
 runMan->SetUserInitialization(new MyPhysicsList);
 runMan->SetUserAction(new MyPrimaryGeneratorAction);

Physics List Class

� All physics lists are derived from G4VUserPhysicsList
� It has three methods the user must implement:

� ConstructParticle()
� ConstructProcess()
� SetCuts()

� Other methods provided:
� AddTransportation() - required or else particles go nowhere
� DumpList() - print list of registered particles
� DumpCutValues() - print list of range cuts for particles
�

How to Build a Physics List – Step 1

� Choose the physics
� which particles at which energies
� what physics processes are important

� Our example: space radiation environment
� cosmic rays: 85% protons, 14% alpha, + C, N, O; most effects in 100

MeV to 20 GeV range
� Van Allen belts: electrons up to 10 MeV, protons ~10 – 100 MeV

� solar particles: protons up to a few GeV

� diffuse gamma background: 0.1 – 200 MeV

� need electromagnetic, hadronic and photo-nuclear processes

How to Build a Physics List – Step 2
� Implement ConstructParticle method in your physics list

� void MyPhysicsList::ConstructParticle()
{
 G4Gamma::GammaDefinition();
 G4Electron::ElectronDefinition();
 G4Positron::PositronDefinition();
 G4Proton::ProtonDefinition();
 G4Neutron::NeutronDefinition();
 G4Alpha::AlphaDefinition();
 G4GenericIon::GenericIonDefintion();
 }

� Or use the ConstructParticle method of the classes:
� G4LeptonConstructor

� G4MesonConstructor
� G4BaryonConstructor

How to Build a Physics List – Step 3a
� Implement ConstructProcess method in your physics list

� void MyPhysicsList::ConstructProcess()
{
 ConstructEM();
 ConstructHadronic();
 ConstructPhotoNuclear();
}

� Here we have divided the processes in our example into
categories for convenience - now implement each one

� Before implementing ConstructEM(), decide which processes
are needed:
� gamma conversion, photo-electric effect, Compton scattering,

� multiple Coulomb scattering, ionization, bremsstrahlung, positron
annihilation

How to Build a Physics List – Step 3a

� Can use “standard” or “low-energy” processes
� standard generally faster and cover higher energies

� low energy more accurate at low incident energies where atomic shell
effects are important

� For this example we choose “standard” processes
� Hence the work for ConstructEM() is already done

� Look at novice example N03

� Copy from ExN03PhysicsList::ConstructEM()

� See advanced examples for the use of low energy processes

How to Build a Physics List – Step 3b

� Now implement ConstructPhotoNuclear() method
� For hadronic and photo-nuclear reactions we not only need to

choose processes, but also models

� for photo-nuclear we choose G4PhotoNuclearProcess and
G4GammaNuclearReactionModel

� this was easy because there is only one photo-nuclear process
available

� also there is only one model available with which to implement this
process for gamma energies below 200 MeV

� we would also need to select a cross section data set, but this comes
by default with the process (in most cases)

How to Build a Physics List – Step 3b

� physics list code for diffuse gamma background (photo-
nuclear):
� void MyPhysicsList::ConstructPhotoNuclear()

{
 G4ParticleDefinition* photon = G4Gamma::Gamma();
 G4ProcessManager* pman = photon->GetProcessManager();

 // Inelastic photon scattering

 G4PhotoNuclearProcess* process = new G4PhotoNuclearProcess;
 G4GammaNuclearReaction* model =
 new G4GammaNuclearReaction;
 process->RegisterMe(model);
 pman->AddDiscreteProcess(process);
 }

How to Build a Physics List – Step 3c

� Now implement ConstructHadronic() method
� Now there are more process and models to choose from

� need elastic and inelastic hadron scattering from nuclei

� For protons choose:
� G4HadronElasticProcess with G4LElastic model

� G4ProtonInelasticProcess with G4LEProtonInelastic model

� For alphas choose:
� G4HadronElasticProcess with G4LElastic model

� G4AlphaInelasticProcess with G4LEAlphaInelastic model

� All of the above have default cross sections

How to Build a Physics List – Step 3c

� physics list code for cosmic rays (hadronic):
� void MyPhysicsList::ConstructHadronic()

{
 G4ParticleDefinition* proton = G4Proton::Proton();
 G4ProcessManager* pman = proton->GetProcessManager();

 // Elastic scattering

 G4HadronElasticProcess* eproc = new G4HadronElasticProcess;
 G4LElastic* emodel = new G4LElastic;
 eproc->RegisterMe(emodel);
 pman->AddDiscreteProcess(eproc);

 // Inelastic scattering

 G4ProtonInelasticProcess* iproc = new G4ProtonInelasticProcess;

How to Build a Physics List – Step 3c
� physics list code for cosmic rays (continued):

� G4LEProtonInelastic* imodel = new G4LEProtonInelastic;
 iproc->RegisterMe(imodel);
 pman->AddDiscreteProcess(iproc);

 // alpha

 G4ParticleDefinition* alpha = G4Alpha::Alpha();
 G4ProcessManager* pman = alpha->GetProcessManager();

 // Elastic scattering. Same model as proton (G4LElastic)

 G4HadronElasticProcess* aproc = new G4HadronElasticProcess;
 aproc->RegisterMe(emodel);
 pman->DiscreteProcess(paroc);

How to Build a Physics List – Step 3c

� physics list code for cosmic rays (continued):
� // Inelastic scattering. Not the same model as for proton.

 G4AlphaInelasticProcess* aiproc = new G4AlphaInelasticProcess;
 G4LEAlphaInelastic* aimodel = new G4LEAlphaInelastic;
 aiproc->RegisterMe(aimodel);
 pman->AddDiscreteProcess(aproc);
}

� exercise for the student:
� extend physics list to include neutrons, pions, and kaons
� continue to use LEP models for elastic and inelastic scattering
� extend physics list to high energies by using HEP models

Modular Physics Lists

� As physics requirements become more realistic, the
physics list gets much longer
� it may be useful to break it up into smaller files
� you may want to define subsets of physics processes which

correspond to a given particle or type of interaction
� you may want to switch on/off a set of processes

� Modular physics lists allow this
� derive your physics list from class G4VModularPhysicsList
� create “sub-physics lists” or modules by deriving from

G4VPhysicsConstructor
� register sub-physics list to main physics list:

� RegisterPhysics(G4VPhysicsConstuctor* fPhysCons)

Organizing A Modular Physics List

� choose physics domains:
� physics of protons, physics of gammas, etc.

� example:
� MyModPhysList::MyModPhysList() : G4VModularPhysicsList()

{
 defaultCutValue = 1.0*mm;

 RegisterPhysics(new GammaPhysics(“gamma”));
 RegisterPhysics(new LeptonPhysics(“lepton”));
 RegisterPhysics(new HadronPhysics(“hadron”));
 RegisterPhysics(new DecayPhysics(“decay”));
}
//Set cut values for gamma and lepton processes

void MyModPhysList::SetCuts()
{ SetCutsWithDefault(); } // use default value above

Organizing A Modular Physics List

� now write the individual physics constructors
� sample header:

� class LeptonPhysics : public G4VPhysicsConstructor
{
 public:
 LeptonPhysics(const G4String& name = “lepton”);
 virtual ~LeptonPhysics();

 virtual void ConstructParticle();
 virtual ConstructProcess();
}

� For each physics constructor, particles and processes are
constructed just as in the non-modular case

� AddTransportation method called automatically in modular lists

Best Guess Physics Lists

� Geant4 provides a set of already-written physics lists which
can be used for a number of applications

� These lists were developed as a “best guess” of the physics
required for a given use case
� application areas include high energy physics, medical, radiation

protection

� written as modular physics lists

� They are a good starting point, but the user should always
validate a chosen list to make sure it does the right thing

� To use, first build the physics list libraries (parallel to Geant4
source directory), then invoke the physics list in your main():
� runManager->SetUserInitialization(new prebuiltPhysList);

Summary

� Physics lists are where the user defines all the particles and
processes required for a given application

� Users must take care to include all the important particles,
processes, models and cross sections

� The user has three choices:
� develop a “simple” physics list derived from G4VUserPhysicsList in

which all particles and processes are defined

� develop a modular physics list derived from G4VModularPhysicsList
in which particle and process definition can be grouped according to a
particular subset of the relevant physics

� use the already-written physics lists provided along with the Geant4
source code

