‘Novembi,2005, Géant4 v7 1

g -S”’.ra nford
Linear

DEtector SEASItiVILY

Maketo AsaiiSLAC)
Geant4d. T utorial ICounrse @ Bordeaux
November2005

Contents

Sensitive detector and hit
Digitizer module and digit

Hit class

Sensitive detector class

Touchable

Readout geometry

G4HCof ThisEvent class and its use

New : G4MultiFunctionalDetector, G4VPrimitiveSensitivity, G4VSDFilter
and G4THitsMap

» Convenient to medical and space applications
Accumulating event data

Detector Sensitivity. 2

Sensitive detector and Hit

Each Logical Volume can have a pointer to a sensitive detector.
» Then this volume becomes sensitive.

Hit is a snapshot of the physical interaction of a track or an accumulation of

interactions of tracks in the sensitive region of your detector.

A sensitive detector creates hit(s) using the information given in G4Step
object. The user has to provide his/her own implementation of the detector

response.
» UserSteppingAction class should NOT do this.

Hit objects, which are still the user’s class objects, are collected in a G4Event

object at the end of an event.

Detector Sensitivity.

3

Detector sensitivity

» A sensitive detector either
» constructs one or more hit objects or
» accumulates values to existing hits
using information given in a G4Step object.

» Note that you must get the volume information from the “PreStepPoint”.

Boundary
End of step point

Begin of step point

Detector Sensitivity. 4

>

>

Digitizer module and digit

Digit represents a detector output (e.g. ADC/TDC count, trigger signal, etc.).

Digit is created with one or more hits and/or other digits by a user's concrete

implementation derived from G4VDigitizerModule.

In contradiction to the sensitive detector which should be assigned to a volume
and is automatically accessed at tracking time, the digitize() method of each
G4VDigitizerModule must be explicitly invoked by the user’s code (e.g. at

EventAction).

» Geant4 kernel will not invoke G4VDigitizerModule by default.

Detector Sensitivity.

5

Hit class

Hit is a user-defined class derived from G4VHit.

You can store various types information by implementing your own concrete Hit class.
For example:

» Position and time of the step

» Momentum and energy of the track
» Energy deposition of the step

» Geometrical information

» Or any combination of above

Hit objects of a concrete hit class must be stored in a dedicated collection which is
instantiated from G4THitsCollection template class.

The collection will be associated to a G4Event object via G4HCofThisEvent.
Hits collections are accessible
» through G4Event at the end of event.
» to be used for analyzing an event

» through G4SDManager during processing an event.

» to be used for event filtering.
Detector Sensitivity. 6

Implementation of Hit class

#include "G4VHit.hh*
class MyDriftChamberHit . public G4VHit
{
public:
MyDriftChamberHit(sone_ar gunment s);
virtual ~ MyDriftChamberHit ();
virtual void Draw();
virtual void Print();
private:
// some data members
public:
// some set/get methods

I

#include “ G4THitsCollection.hh
typedef G4THitsCollection< MyDriftChamberHit
MyDriftChamberHitsCollection :

Detector Sensitivity. 7

Sensitive Detector class

» Sensitive detector is a user-defined class derived from G4VSensitiveDetector.

#include "G4VSensitiveDetector.hh

#include * MyDriftChamberHit.hh

class G4Step;

class G4HCofThisEvent;

class MyDriftChamber : public G4V SensitiveDetector

{
public:

MyDriftChamber(G4String name);
virtual ~ MyDriftChamber ();
virtual void Initialize(G4AHCof ThisEvent*HCE);
virtual G4bool ProcessHits(G4Step* astep ,
G4TouchableHistory* ROhist);
virtual void EndOfEvent(G4HCofThisEvent*HCE);
private:
MyDriftChamberHitsCaollection * hitsCollection
G4int collectioniD ;

Detector Sensitivity. 38

Sensitive detector

A tracker detector typically generates a hit for every single step of every single
(charged) track.

» A tracker hit typically contains
» Position and time

» Energy deposition of the step
» Track ID

A calorimeter detector typically generates a hit for every cell, and accumulates
energy deposition in each cell for all steps of all tracks.

» A calorimeter hit typically contains
» Sum of deposited energy
y» Cell ID

You can instantiate more than one objects for one sensitive detector class. Each
object should have its unigue detector name.

» For example, each of two sets of drift chambers can have their dedicated
sensitive detector objects. But, the functionalities of them are exactly the
same to each other and thus they can share the same class. See
examples/extended/analysis/A01 as an example.

Detector Sensitivity.

9

Implementation of Sensitive Detector - 1

MyDriftChamber:: MyDriftChamber (G4String det ect or _nane)
:G4\V SensitiveDetector(det ect or _nane),
collectionID(- 1)

collectionName.insert(“col | ection_nane"),

In the constructor, define the name of the hits collection which is handled by
this sensitive detector

In case your sensitive detector generates more than one kinds of hits (e.g.

anode and cathode hits separately), define all collection names.

Detector Sensitivity 10

Implementation of Sensitive Detector - 2

void MyDriftChamber:: Initialize (G4HCofThisEvent*HCE)
{
if(collectionlD <0) collectionlD = GetCaollectionlD (0);
hitsCollection = new MyDriftChamberHitsCollection
(SensitiveDetectorName,collectionName] 0)]);
HCE >AddHitsCollection (collectionlD;hitsCollection

Initialize() method is invoked at the beginning of each event.
Get the unique ID number for this collection.
» GetCollectionID() is a heavy operation. It should not be used for every events.

» GetCollectionID() is available after this sensitive detector object is registered
to G4SDManager. Thus, this method cannot be used in the constructor of this
detector class.

Instantiate hits collection(s) and attach it/them to G4HCofThisEvent object given
in the argument.

In case of calorimeter-type detector, you may also want to instantiate hits for all
calorimeter cells with zero energy depositions, and insert them to the collection.

Detector Sensitivity 11

Implementation off Sensitive Detector - 3

G4bool MyDriftChamber:: ProcessHits
(G4Step*aStep,G4TouchableHistory* ROhist)

{
MyDriftChamberHit * aHit = new MyDriftChamberHit 0;

/[some set methods

hitsCollection - >insert(aHit
return true;

This ProcessHits() method is invoked for every steps in the volume(s) where this
sensitive detector is assigned.

In this method, generate a hit corresponding to the current step (for tracking
detector), or accumulate the energy deposition of the current step to the existing
hit object where the current step belongs to (for calorimeter detector).

Don't forget to collect geometry information (e.g. copy number) from
“PreStepPoint”.

Currently, returning boolean value is not used.

Detector Sensitivity 12

Implementation of Sensitive Detector - 4

void MyDriftChamber:: EndOfEvent (G4HCofThisEvent*HCE)
1)

» This method is invoked at the end of processing an event.

» It is invoked even if the event is aborted.
» It is invoked before UserEndOfEventAction.

Detector Sensitivity 13

Step point and touchable

As mentioned already, G4Step has two G4StepPoint objects as its starting and
ending points. All the geometrical information of the particular step should be
taken from “PreStepPoint”.

» Geometrical information associated with G4Track is basically same as
“PostStepPoint™.

Eachi G4StepPoint object has
» Position in world coordinate system
» Global and local time
» Material
» G4TouchableHistory for geometrical information

G4TouchableHistory object is a vector of information for each geometrical
hierarchy.

» COpYy humber
» transformation / rotation to its mother

Since release 4.0, hand/es (or smart-pointers) to touchables are intrinsically used.
Touchables are reference counted.

Detector Sensitivity 14

Copy number

Suppose a calorimeter is made of

4x5 cells.
» and it is implemented by two n C

levels of replica.

In reality, there is only one physical n c ~

volume object for each level. Its

position is parameterized by its -
@) C) 2 |
copy humber.

To get the copy number of each
level, suppose what happens if a
step belongs to two cells.

» Remember geometrical information in G4Track is identical to
"PostStepPoint”.

» You cannot get the collect copy number for "PreStepPoint™ if you directly
access to the physical volume.

Use touchable to get the proper copy number, transform matrix, etc.

Detector Sensitivity 15

Touchable

» G4TouchableHistory has information of geometrical hierarchy of the point.

GAStep * aStep ;
GA4StepPoint * preStepPoint = aStep - >GetPreStepPoint ();
G4TouchableHistory: * theTouchable =
(G4TouchableHistory*)(preStepPoint - >GetTouchable ());
G4dint copyNo = theTouchable ->GetVolume () - >GetCopyNo ();
G4int motherCopyNo
= theTouchable ->GetVolume(1)->GetCopyNo ();
G4int grandMotherCopyNo
= theTouchable ->GetVolume(2)->GetCopyNo();
G4ThreeVector worldPos = preStepPoint - >GetPosition ();
G4ThreeVector localPos = theTouchable ->GetHistory ()
- >GetlopTransform (). TransformPoeint (worldPos);

Detector Sensitivity.

Readout geometry

In some cases of most complicated geometries, it is not easy to define volume
boundaries corresponding to the readout segmentation.

Readout geometry is a virtual and artificial geometry which can be defined in
parallel to the real detector geometry.

Readout geometry is optional. May have more than one.
» Each one should be associated to a sensitive detector.

Note that a step is not limited by the boundary of readout geometry.

The Tracking Geometry A Readout Geometry
(buids by G4VUserDetectorConstmeton) (builds by a G4VReadoutT eometny)

< '7_[-';4@“?‘?;?:1.3“.3.:],__ ‘%?

World of RO geometrny

Detector Sensitivity 17

Defining a sensitive detector

» Basic strategy
G4LogicalVolume* myLogCalor =

G4V SensetiveDetector* pSensetivePart

new MyCalorimeter(“ /mydet/calorimeterl ");
G4SDManager* SDMan = G4SDManager::GetSDMpointer();
SDMar >AddNewDetector (pSensitivePart)

myLogCalor - >SetSensitiveDetector (pSensetivePart);

» Each detector object must have a unigue name.
Some logical volumes can share one detector object.

More than one detector objects can be made from one detector class with
different detector name.

One logical volume cannot have more than one detector objects. But, one
detector object can generate more than one kinds of hits.

» e.dg. a drift chamber class may generate anode and cathode hits
separately.

Detector Sensitivity.

GAHCof TThisEvent

» A G4Event object has a G4HCofThisEvent object at the end of (successful) event

processing. G4HCofThisEvent object stores all hits collections made within the

event.
» Pointer(s) to the collections may be NULL if collections are not created in the
particular event.
» Hits collections are stored by pointers of G4VHitsCollection base class. Thus,
you have to cast them to types of individual concrete classes.
» The index number of a Hits collection is unique and unchanged for a run.
The index number can be obtained by

G4SDManager::GetCollectionID(“det Nane/ col Nane”);

» The index table is also stored in G4Run.

Detector Sensitivity.

Usage of G4HCofThisEvent

static int CHCID= -1,
[f(CHCID <0) CHCID = G4SDManager::GetSDMpointer()

- >GetCollectionID(* myDet/calorimeterl/collectionl
G4HCofThisEvent * HCE = evt - >GetHCofThisEvent ();
MyCalorimeterHitsCollection *CHC =0;

If(HCE)
{CHC = (MyCalorimeterHitsCollection *) (HCE- >GetHC(CHCID));}

If(CHC)
{ Int n_hit =CHC->entries ();
G4cout<<"Calorimeter has "<<n_hit <<" hits."<<G4endl;
for(int i1=0;il<n_hit;il++)
{ MyCalorimeterHit * aHit = (*CHC)[i1];
aHit - >Print(); }

» This scheme can be adapted also for Digitization.
Detector Sensitivity 20

When to invoke GetCollectionID()?

Which is the better place to invoke G4SDManager::GetCollectionID() in a user

event action class, in its constructor or in the BeginOfEventAction()?
It actually depends on the user's application.

» Note that construction of sensitive detectors (and thus registration of their
hits collections to SDManager) takes place when the user issues

RunManager::Initialize(), and thus the user’s geometry is constructed.

In case user's EventAction class should be instantiated before
Runmanager::Initialize(), GetCollectionID() should not be in the constructor of:

EventAction.

While, if the user has nothing to do to Geant4 before RunManager::Initialize(),

this initialize method can be hard-coded in the main() before the instantiation of
EventAction (e.g. exampleA01), so that GetCollectionID() could be in the

constructor.

Detector Sensitivity 21

“ﬁ" Concrete sensitivity classes

» Up to the current version (7.1), Geant4 provides only an abstract base class
(G4VSensitiveDetector) for the user to define his/her detector sensitivity.

» Various example detector classes are provided.

» This is enough for HEP experiments, since their interest is mostly storing
hits in their detectors.

» But not convenient for space and medical applications.
» Their interest is mainly scoring dose/flux.

» We will introduce G4MultiFunctionalDetector (concrete class derived from
G4VSensitiveDetector) that allows the user to register concrete class objects of
G4VPrimitiveSensitivity to build a scoring detector of his/her needs.

» G4PSEnergyDeposit, G4PSFlatSurfaceFlux, G4PSDoseDeposit,
G4PSTrackLength, etc. (class names are still preliminary) will be provided.

» We will continue working for additional primitive sensitivity concrete classes.

Detector Sensitivity — 22

b Concrete sensitivity classes

» Each G4VPrimitiveSensitivity class generates one hits collection per event. By
registering more than one classes of G4VPrimitiveSensitivity,

G4MultiFunctionalDetector generates more than one collections.

New class G4VSDFilter will be introduced. It can be attached to
G4VSensitiveDetector and/or G4VPrimitiveSensitivity to define which kinds of

tracks are to be scored.

» E.g., surface flux of protons of more than 1 GeV/c can be scored by
G4PSFlatSurfaceFlux with a filter.

Current G4Scorer and its related classes will become obsolete, but they will be

kept with limited functionalities for a while for backward compatibility sake.

Detector Sensitivity 23

)| cicase G4THItsMap

» G4THitsMap template class (an alternative to
G4THitsCollection) will be introduced. It is also a derived
class of G4VHitsCollection.

» It is more convenient for scoring purposes. It does NOT
mandate G4VHit concrete class to be stored, but for
example a simple double value can be mapped with a
copy number.

» All new primitive sensitivity classes use G4THitsMap.

Detector Sensitivity 24

For example...

MyDetectorConstruction::Construct()

{.

G4LogicalVolume* myCellLog = new G4LogicalVolume(...);

G4VPhysicalVolume* myCellPhys = new G4PVParametrised(...);
G4MultiFunctionalDetector* myScorer = new G4MultiFunctionalDetector(“myCellScorer”);
G4SDManager: :GetSDMpointer()->AddNewDetector(myScorer);
myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveSensitivity* totalSurfFlux = new G4PSFlatSurfaceFlux(*TotalSurfFlux™);
myScorer->Register(totalSurfFlux);

G4VPrimitiveSensitivity* protonSufFlux = new G4PSFlatSurfaceFlux("ProtonSurfFlux”);
G4VSDFilter* protonFilter = new G4SDParticleFilter(“protonFilter”);
protonFilter->Add(“proton”);

protonSurfFlux->SetFilter(protonFilter);

myScorer->Register(protonSurfFlux);

G4VPrimitiveSensitivity* totalDose = new G4PSDoseDeposit(“TotalDose”);
myScorer->Register(totalDose); No need of implementing

sensitive detector |
Detector Sensitivity.

>

Accumulating event data

For scoring purposes, you need to accumulate a physical quantity (e.g. energy
deposition of a step) for entire run of many events. In such a case, do NOT add
up individual energy deposition of each step directly to a variable for entire run.

» Compared to the total sum for entire run, energy deposition of single step is
too tiny. Rounding error problem may easily happen.

» Total energy deposition of 1 million events of 1 GeV incident particle
ends up to 1 PeV (10%>eV), while energy deposition of each single step
is O(1 keV) or even smaller.

Create your own Run class derived from G4Run, and implement
RecordEvent(const G4Event™) virtual method. Here you can get all output of the
event so that you can accumulate the sum of an event to a variable for entire
run.

» RecordEvent(const G4Event™) is automatically invoked by G4RunManager.

» Your run class object should be instantiated in GenerateRun() method of
your UserRunAction.

In particular with newly introducing G4VPrimitiveSensitivity concrete classes, this
is the simplest and most widely applicable way.

Detector Sensitivity 26

Customized run class

#include “G4Run.hh”
#include “G4Event.hh” Note :
#include “G4THitsMap.hh”
Class MyRun : public G4Run
{
public:
MyRun();
virtual ~MyRun();
virtual void RecordEvent(const G4Event™*);
private:
G4int nEvent;
G4int totalSurfFluxID, protonSurfFluxID, totalDoselD;
G4THitsMap<G4double> totalSurfFlux;
G4THitsMap<G4double> protonSurfFlux;
G4THitsMap<G4double> totalDose;

G4THitsMap<G4double>* eventTotalSurfFlux;
G4THitsMap<G4double>* eventProtonSurfFlux;

G4THitsMap<G4double>* eventTotalDose
public:
... access methods ...

This sample code uses newly introducing
concrete sensitivity classes.

Implement how you accumulate
event data

¥

Detector Sensitivity 27

Customized run class

MyRun::MyRun() : nEvent(0) name of G4MultiFunctionalDetector object

{
G4SDManager* SDM = G4SDManager:: GetSDMpointer():

totalSurfFluxID = SDM->GetCollectionID("myCellScorer/TotalSurfFlux™);
protonSurfFluxID = SDM->GetCollectionID("myCellScorer/ProtonSurfFlux™);
totalDoselD = SDM->GetCollectionID("myCellScorer/TotalDose");

J name of G4VPrimitiveSensitivity object
void MyRun::RecordEvent(const G4Event™ evt)

{
nEvent++;
G4HCofThisEvent* HCE = evt->GetHCofThisEvent();
eventTotalSurfFlux = (G4THitsMap<G4double>*)(HCE->GetHC(totalSurfFluxID));
eventProtonSurfFlux = (G4THitsMap<G4double>*)(HCE->GetHC(protonSurfFluxID));
eventTotalDose = (G4THitsMap<G4double>*)(HCE->GetHC(totalDose));
totalSurfFlux += *eventTotalSurfFlux;

No need of loops.
+= operator is provided !

protonSurfFlux += *eventProtonSurfFlux;
totalDose += *eventTotalDose;

Detector Sensitivity.

RunAction with customized run

G4Run* MyRunAction::GenerateRun()
{ return (new MyRun()); *
void MyRunAction::EndOfRunAction(const G4Run* aRun)
{
MyRun theRun = (MyRun*)aRun;
// ... analyze /[record / print-out your run summary.
// MyRun object has everything you need ...

s

As you have seen, to accumulate event data, you do NOT need
» Event / tracking / stepping action classes

» All you need are your Run and RunAction classes.
» With newly introducing concrete sensitivity classes, you do NOT even need
» Sensitive detector implementation

Detector Sensitivity 29

In summary.

» SensitiveDetector is the class to be associated to G4LogicalVolume.

» In case you want to store hits of each event,
» Implement hit, sensitive detector and event action classes.

» In case you want to accumulate event data and to get the run summary,
» Use newly introduced concrete sensitivity classes and,

» Implement run and run action classes.

Detector Sensitivity.

