

Geant4 in a Distributed Computing Environment

NFN

tituto Nazionale

S. Guatelli¹, P. Mendez Lorenzo², J. Moscicki², M.G. Pia¹ 1. INFN Genova, Italy, 2. CERN, Geneva, Switzerland

Geant4 2005 10th user conference and collaboration workshop November 3-10, 2005, Bordeaux, France

Vision

Problem

How to obtain a quick response from a Geant4 simulation

- Case 1: quick response in few minutes
- *i.e. dosimetry, study the efficiency of detectors*
- Case 2: reasonable time for response from G4 simulations requiring high statistics

i.e. medical, space science, high energy physics applications, tests of Geant4 physics models

Solution

Parallelisation

- On dedicated pc clusters
- On the GRID

Study a general approach, independent from the specific Geant4 application

Strategy

- Study the performance of two Geant4 applications as typical examples:
 - Geant4 Brachytherapy application
 - Geant4 IMRT application

	Sequential mode on a Pentium IV, 3 GHz		
G4 Brachytherapy application		G4 IMRT application	
Execution time of 20 M events ~ 5 hours		Execution time of 10 ⁹ events ~ 9 days and half	
Goal: quick response ~ few minutes		Goal: quick response ~ few hours	
 Parallelisation through DIANE Performance tests On a single CPU On clusters On the GRID Quantitative analysis of the results 			

Outline

- Diane overview
- How to dianize a G4 application
- Results of performance tests
- Conclusions

DIANE Overview

DIANE R&D Project

- started in 2001 in CERN/IT with very limited resources
- collaboration with Geant 4 groups at CERN, INFN, ESA
- succesful prototypes running on LSF and EDG

Practical Example

• Example: simulation with analysis

- The job is divided into tasks
- The tasks are executed on worker components
- Each task produces a file with histograms
- Job result = sum of histograms produced by tasks
- Master-worker model
 - Client starts a job
 - Workers perform tasks and produce histograms
 - Master integrates the results

Running in a distributed environment

The application developer is shielded from the complexity of underlying technology via DIANE

- Not affecting the original code of the application
 - standalone and distributed case is the same code
- Good separation of the subsystems
 - the application does not need to know that it runs in a distributed environment
 - the distributed framework (DIANE) does not need to care about what actions an application performs internally

How to dianize a G4 application

- Look at the Geant4 extended example: ExDIANE in the parallel directory
- Completely transparent to the user: same G4 code
- Documentation at http://www.cern.ch/diane specific for Geant4 applications
 - Installing and compiling DIANE
 - Compiling and running a Geant4 application through DIANE

Test results

- Study the performance of the execution of the *dianized* G4Brachy:
 - Test on a single CPU
 - Test on a dedicated farm (60 CPUs)
 - Test on a farm, shared with other users (LSF, CERN)
 - Test on the GRID

Tools and libraries: Simulation toolkit: Geant4 7.0.p01 Analysis tools: AIDA 3.2.1 and PI 1.3.3 DIANE: DIANE 1.4.2 CLHEP: 1.9.1.2 G4EMLOW2.3

Results - G4Brachy: 1 CPU

Test on a single dedicated CPU (Intel ®, Pentium IV, 3.00 GHz)

Results - G4Brachy: farm

- Dedicated farm : 30 identical biprocessors (Pentium IV, 3 GHz)
- Thanks to Hurng-Chun Lee (Academia Sinica Grid Computing Center, Taiwan)
- Thanks to Regional Operation Centre (ROC) Team, Taiwan

Comment

- The job ends when all the tasks are executed on the workers
- If the job is split into a higher number of tasks, there is a higher chance that the workers finish the tasks at the same moment

from a performance point of view

Results - G4Brachy: farm (3)

The load of the cluster changes quickly in time The conditions of the test are not reproducible

Results - G4Brachy: GRID (1)

- The load of the GRID changes quickly in time
- The conditions of the test are not reproducible
- G4Brachy executed on the GRID on nodes located in Spain, Russia, Italy, Germany, Switzerland

 $\frac{\overline{ExecutionTime_{PARALLEL_MODE_Diane}}}{\overline{ExecutionTime_{PARALLEL_MODE_NoDiane}}} \approx 0.3$

Without DIANE:

- 2 jobs not successfully executed due to set-up problems of the workers

Through DIANE:

- All the tasks are executed successfully on 22 workers

- Not all the workers are initialized and used: on-going investigation

How the GRID load changes

Execution time of G4Brachy in two different conditions of the GRID DIANE used as intermediate layer

20 M events, 60 workers initialized, 360 tasks

Conclusions

- **General approach** to obtain quick response from Geant4 simulations
- Advantage of using DIANE as intermediate layer in a dedicated farm or GRID
 - Transparency
 - Good separation of the subsystems
 - Good management of the CPU resources
- DIANE is very advantageous as an intermediate layer to the GRID from a performance point of view
- A quantitative analysis of the performance results is in progress
- Submission of this work for publication in IEEE Trans. Nucl. Sci.
- Acknowledgments to: M. Lamanna (CERN), Hurng-Chun Lee (ASGC, Taiwan), L. Moneta (CERN), A. Pfeiffer (CERN)
- Thanks to the GRID team of CERN and the Regional Operation Centre Team of Taiwan