Verification / Validation Tools

B. Mascialino, A. Pfeiffer, M.G. Pia, A. Ribon, P. Viarengo

10th Geant4 Workshop Bordeaux, November 8th 2005

Goodness of Fit tests

Goodness-of-Fit tests measure:
the compatibility of a random sample with a given theoretical distribution function as its population (one-sample problem)
the compatibility of two samples (two-sample problem)

The problem is concerned with the choice of one of these two alternative hypothesis:

 $H_0:F_1(x) = F_2(x);$ $H_1:F_1(x) \neq F_2(x), F_1(x) < F_2(x), F_1(x) > F_2(x)$

The acceptance of the null hypothesis H_0 leads to the exact specification the distribution analysed.

₩ HEP Statistics Project - Netscape						
Back Forward Reload	Home Search Netscape Print Security Shop Stop					
🖌 🐨 Bookmarks 🙏 Location: http://www.ge.infn.it/geant4/analysis/HEPstatistics/index.html 🔍 🕼 What's Related						
	Statistical Toolkit					
<mark>■ Home</mark>	The Statistical Toolkit is an open source software toolkit for statistical data analysis.					
Statistical Comparison	It adopts advanced programming techniques (OO technology, generic programming) to achieve openness to extension and evolution. The Too is written in C++.					
 <u>User Requirements</u> <u>Design</u> 	The project adopts an incremental and iterative software process. The first development cycle focuses on software tools for Goodness-of-Fit test.					
 <u>Documentation</u> <u>Artifacts in detail</u> <u>Download</u> 	To facilitate the application in diverse experimental environments, the statistical tools are based on the <u>AIDA</u> Abstract Interfaces for Data Analysis and do not rely on any specific implementation of analysis systems. The user may select her/his preferred analysis tool system to co-work with the Statistical System, by loading a shared library of any AIDA-compliant analysis system.					
 <u>Talks</u> <u>Papers</u> Gallery 	Last modified 26 March 2004 - <u>Maria Grazia Pia</u>					
 <u>Useful links</u> <u>AIDA</u> <u>Team</u> <u>Contact us</u> 	G.A.P Cirrone, S. Donadio, S. Guatelli, A. Mantero, B. Mascialino, S. Parlati, M.G. Pia, A. Pfeiffer, A. Ribon, P. Viarengo "A Goodness-of-Fit Statistical Toolkit" IEEE- Transactions on Nuclear Science (2004), 51 (5): 2056-2063.					

StatisticsTesting-V1-01-00 release downloadable from the web: http://www.ge.infn.it/geant4/analysis/HEPstatistics/

Software process guidelines

Unified Process, specifically tailored to the project

- practical guidance and tools from the RUP
- both rigorous and lightweight
- mapping onto ISO 15504 (and CMM)
- Incremental and iterative life-cycle
- 1st cycle: 2-sample GoF tests
 - 1-sample GoF in preparation

Architectural guidelines

The project adopts a solid architectural approach

- to offer the *functionality* and the *quality* needed by the users
- to be *maintainable* over a large time scale
- to be *extensible*, to accommodate future evolutions of the requirements

Component-based architecture

- to facilitate re-use and integration in diverse frameworks
- layer architecture pattern
- core component for statistical computation
- independent components for interface to user analysis environments

Dependencies

- no dependence on any specific analysis tool
- can be used by any analysis tools, or together with any analysis tools
- offer a (HEP) standard (AIDA) for the user layer

User Layer

Simple user layer

- Shields the user from the complexity of the underlying algorithms and design
- Only deal with the user's analysis objects and choice of comparison algorithm

GoF algorithms (current release)

- Algorithms for binned distributions
 - Anderson-Darling test
 - Chi-squared test
 - Fisz-Cramer-von Mises test
 - **Tiku** test (Cramer-von Mises test in chi-squared approximation)
- Algorithms for unbinned distributions
 - Anderson-Darling test
 - Cramer-von Mises test
 - **Goodman** test (Kolmogorov-Smirnov test in chi-squared approximation)
 - Kolmogorov-Smirnov test
 - Kuiper test
 - **Tiku** test (*Cramer-von Mises test in chi-squared approximation*)

Recent extensions: algorithms

- Fisz-Cramer-von Mises test and Anderson-Darling test
 - exact asymptotic distribution (earlier: critical values)
- New tests:
 - weighted Kolmogorov-Smirnov, weighted Cramer-von Mises
 - various weighting functions available in literature
 - Watson test (can be applied in case of cyclic observations, like Kuiper test)
 - Girone test
- New features: approximated p-value calculation
- chi-squared test
- Anderson-Darling test
- It is the most complete software for the comparison of two distributions, even among commercial/professional statistics tools
 - goal: provide all edf 2-sample GoF algorithms existing in statistics literature

• Publication in preparation to describe the new algorithms

Recent extensions: user layer

First release: user layer for AIDA analysis object

July 2005: added user layer for ROOT histograms

- in response to user requirements

Other user layer implementations

- easy to add
- sound architecture decouples the mathematical component and the user's representation of analysis objects
- different requirements from various user communities: satisfy them without introducing dependencies on any analysis tools

Usage

Geant4 physics validation

- quantitative evaluation of Geant4 physics models with respect to established reference data (K. Amako et al., Comparison of Geant4 electromagnetic physics models against the NIST reference data - IEEE Trans. Nucl. Sci. 52- 4 (2005) 910-918)
- Bragg peak validation in collaboration with the CATANA team LNS INFN
- Radioactive decay in collaboration with Luciano Pandola LNGS INFN

Space applications

- Radioprotection applications for manned space missions REMSIM Susanna Guatelli INFN Genova
- ESA test beam validation at Bessy
- Medical applications
 - IMRT in collaboration with the IST team Genova
- LCG Simulation Validation project see Alberto Ribon talk!
- CMS
 - validation of "new" histograms w.r.t. "reference" ones in OSCAR Validation Suite

Power of the tests

Which is the most suitable goodness-of-fit test?

Systematic study of GoF tests

- No comprehensive study of the relative power of GoF tests exists in literature
 - **novel research in statistics** (not only in physics data analysis!)
- Systematic study of all existing GoF tests in progress
 - made possible by the extensive collection of tests in the Statistical Toolkit
- Provide guidance to the users based on sound quantitative arguments
- Preliminary results available
- Publication in preparation

Method for the evaluation of power

<u>Pseudoexperiment</u>: a random drawing of two samples from two parent distributions

> N=1000 Monte Carlo replicas

For each test, the p-value computed by the GoF Toolkit derives from the analytical calculation of the asymptotic distribution, often depending on the samples sizes

Parent distributions

Characterization of distributions

Skewness

$$S = \frac{x_{0.975} - x_{0.5}}{x_{0.5} - x_{0.025}}$$

Tailweight

$$T = \frac{x_{0.975} - x_{0.025}}{x_{0.875} - x_{0.125}}$$

Parent distribution	S	Т
$f_1(x)$ Uniform	1	1.267
$f_2(x)$ Gaussian	1	1.704
$f_3(x)$ Double exponential	1	2.161
$f_4(x)$ Cauchy	1	5.263
$f_5(x)$ Exponential	4.486	1.883
$f_6(x)$ Contamined normal 1	1	1.991
$f_7(x)$ Contamined normal 2	1.769	1.693

Comparative evaluation of tests

Tailweight

Kewness		Short (T<1.5)	Medium (1.5 < T < 2)	Long (T>2)
	S~1	KS	KS – CVM	CVM - AD
Ś	S>1.5	KS - AD	AD	CVM - AD

Preliminary results

- No clear winner for all the considered distributions in general
 - the performance of a test depends on its intrinsic features as well as on the features of the distributions to be compared
- Practical recommendations
 - 1) first classify the type of the distributions in terms of skewness and tailweight
 - 2) choose the most appropriate test given the type of distributions
- Systematic study of the power in progress
 - for both binned and unbinned distributions
- Topic still subject to research activity in the domain of statistics
- Publication in preparation

Outlook

- 1-sample GoF tests (comparison w.r.t. a function)
- Comparison of two/multi-dimensional distributions
- Systematic study of the power of GoF tests
- Goal to provide an extensive set of algorithms so far published in statistics literature, with a critical evaluation of their relative strengths and applicability
- Treatment of errors, filtering
- New release coming soon
- New papers in preparation

Conclusions

- A novel, complete software software toolkit for statistical analysis is being developed
 - rich set of algorithms
 - rigorous architectural design
 - rigorous software process
- A systematic study of the power of GoF tests is in progress
 - unexplored area of research

Application in various domains

- Geant4, HEP, space science, medicine...