Visualization and (G)UI Parallel Sessions

Session 1: Monday: 15:30-16:45

10 - /vis/viewer/set/background for selection of background color — John

10 - Adding window location to view parameters - John

10 - Non-uniform scaling - John

10 - <sstream> - Koichi

15 - Boolean Operations still problems for some users + need for a boolean “cut” rather than
“section” - John

15 - Enhanced Trajectory drawing - Joseph

10 - Generic cuts on attributes (make Trajectories/Hits invisible and/or culled based on physics
atts) — Joseph

Session 2: Tuesday: 14:00-15:15

15 - Web services of Geant4 - Hajime

05 - DAWN web service - Joseph

05 - Integrated visualization of field-lines (electric and magnetic) - Joseph

10 - Simplified switching among multiple visualization drivers at event-level - Joseph
10 - Visualization for new Scorers - Joseph

05 - Issues around static objects CLHEP Transform3D::Identity and G4VisAttributes::Invisible
when using DLLs on Windows - Guy

15 - Python interfaces - Koichi

05 - Some Future Considerations for Python Interface - Hajime

05 - Visualization for Parallel Worlds - Tsukasa

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

/vis/viewer/set/background for selection of background color

John Allison introduced the topic

*Background

—/vislviewer/set/background green
Ivis/viewer/set/background 1 .5 .5

Ivis/viewer/refresh (if not auto-refresh)
Implemented in SetView() of OpenGL, RayTracer[X]
Add 4th parameter (opacity)?

All thought this was OK

*Openlnventor also has it

*Color Map generally useful (in graphics reps, could use its methods in
detector construction for example).

*Color Map could also include wavelengths?

*Opacity as 4th param, OK

*Eventually have in HepRep too

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

Adding window location to view parameters

John Allison introduced the topic

*Window location

/vis/open OGLIX 600+100+100
Ivis/viewer/create 800-0+0

Implemented in OGL*X, RayTracerX; needed in OGL*Xm, Win32, OI...

All thought this was OK

*Note that /vis/open above is compound command that includes /vis/viewer/create.
That is, the two commands above are two different options

sEventually have in HepRep too

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

Non-uniform scaling

John Allison introduced the topic

*Non-uniform scaling

/vis/viewer/scale .1 .1 1
/vis/viewer/scaleTo .1 .11

Implemented in OpenGL; needed elsewhere

«SceneHandler’s job
*Objects will appear distorted, for example, sphere will become ellipsoid
*Example use case is drawing of accelerator

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

From Koichi on <sstream>

String Stream
Shift to “sstream”

m <strstream> header is now obsolete. We should shift from <strstream> to < >,
m Shift from ostrstream / istrsteam to
= Currently, warning message is suppressed by gl obal s/ managenent /i ncl ude/ G4Types. hh

m There are many files affected over categories (see the next slide).
= The migration is expected to be done by each category.

obsolete

#include < strstreans #include <

char strg[100];
std::ostrstream os(strg,100); 0S << *“hoge hoge”;

0s << ‘“hoge hoge” << 'O ||w G4String astr= os.str();
G4String astr= strg;

char* astring= "1 2 37; char* astring= "1 2 37;

std::istrstream is(astring); is(astring);
IS >>Vvx >>vy >>vz; iS>>vx >>vy >>vz;

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

From Koichi on <sstream>
Rough Estimation of Impact

Category # of affected codes

Run 4

Interfaces

Persistency

Particle/management

Event

Graphics_rep

Geometry

G3tog4

Global

Visualization

Process/cut still remain unnecessary #include <strstream>-s

Process/management

Process/hadronic

Process/electromagnetic

Process/transportation

Parameterisations

Intercoms

Tracking

In addition, there still remains unnecessary <strstream> inclusions.
Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

From Koichl on <sstream>
How to shift in practice?

Grep “strstream” in your whole codes.
m > grep -r strstream

Brush up your codes...

m Checkif your “ #include < strstream >" statements in .cc/.hh files are really
necessary.
m unnecessary inclusion? (never used, but included!)
m Inclusion in header files should be moved into .cc files in most cases.

Special Notes for implementations of G4XXXMessenger

s G4UImessenger.hh will NOT include <strstream>(<sstream>), so that

#include <strstream> is replaced with #include <

ostrstream / istrstream are shifted to

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

<SStream>

Interfaces, Intercoms, Global, done by Koichi already

*Koichi has given us specific recipe for how to fix the code.

*Koichi has tested on Linux. Tests OK.

*Guy has tested on Windows. Tests OK.

egraphics_reps: 1 file to fix - Turns out John Allison has already done it

svis: 39 files to fix - Turns out John Allison has already done it (thanks John!)

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

Boolean Operations

John Allison introduced the topic

*Trouble if two surfaces are shared between operand and operator or nearly share
surface or if have a whole hierarchy of boolean operations.

*Existing code is by Evgueni and requires deep expert knowledge.

*Evgueni is no longer supported for Geant4, and the problems to be solved are
non-trivial, so he can’t work on them as a brief, spare-time project, as he has
helped us on other minor issues.

«John Allison and Evgueni have prepared a detailed proposal, a major re-
implementation. Among the ideas, if two surfaces are very close, within a declared
tolerance, declare them to be the same surface.

*Proposal includes not only fixing bugs, but implementing some geometries that
are currently simply not supported. Will also provide new boolean operation of
great use to visualization, the “cutaway”.

Among the users who have been affected by existing problems with boolean
operations are LHCb.

*Vis-GIU group endorse the proposal. Question is how to fund the work.

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

Nov 2005

Boolean Operations

G4Polyhedron Discussion Document (Draft 26/10/05)
1 Background

The original G4Polyhedron was written by Evgeni Tchemaev. At some stage, it
became HepPolyhedron, with a view to incorporating in CLHEP; G4Polyhedron
became a simple wrapper.

HepPolyvhedron defines a three dimensional shape in terms of a set of facets. The
facets are triangles or planar quadrilaterals. The vertices of the facets are specified by
indices into a vector of vertices. Seveml specialised sub-classes implement common
shapes, such as box and tube, that are used by common Geant4 solids. Note that not
all Geantt shapes are able to provide G4Polvhedron representations at present — see
Appendix A. Access methods are provided to retrieve information for the
visualisation scene handlers (Appendix B summarises the current interface).

A significant part of HepPolyhedron is the Boolan processor, allowing union
(addition), intersection and subtraction. The algorithms for these operations are
complex and it is difficult to avoid numerical problems. There are also logical
problems well known in solid geometry. Unfortunately, this gives rise to one of the
most common problem reports — see User Forum: Visualization threads 5, 51, 79, 87,
142, 168, 232 and Geometry threads 19, 48, 55, 65, 73, 130, 152, 281, 348, 430,
Although this is not a geometry problem, if often gets reported there. Some of the
earlier problems are fixed, but a residue remains.

2 Proposal

The problems of Boolean processing are complex and difficult. The algorithms need a
thorough rethink. They were written many years ago. Expertise and familiarity with
the code have faded away. It is not simply a matter of refining the algorithms, but of
redesigning them using best current practice. In particular, we think that robustness
can only be guaranteed by the introduction of the concept of tolerance, much as in
Gean#t geometry tracking. We think that the only way forward is a rewrite,

A simple glance at the missing or incorrect representations (see Appendix A) or at the
features of the existing code (see Appendix B) will convince vou that this is no small
job. Based on Evgeni's experience, we estimate that a rewrite will take at least | man-
year of effort. From that we hope to get robust more efficient and complete code.

Visualization and (G)UI Parallel Sessions J. Perl

Boolean Operations

*Proposal also includes two [AppendixlAh— geanm shape? t:_l.lrrently without
useful appendices proper polyhedron representation
3.1 Returning an incorrect polyhedron

A1l BREPS return a simple bounding box by inheritance of
G4BREPSolids — except G4BREFSolid, G4BREPSclidPCone and
GABREFSolidPolyhedra, which are correctly implemented.

G4Hype returns a tube

G4Polyhedra when constructed using *“generic parameters”
gives “HepPolyhedronPgon: error”

Complete document repI‘Oduced G4TwistedBox returns a simple box
at end of this presentation GdTwistedTrap returns a simple trapezoid

GATwistedTrd returns a simple Trd
G4TwistedTubs returns a simple Tubs
3.2 Others simply not implemented
G4ClippablePolygon.ce

G4Folycone (when constructed using “generic parameters”)

4 Appendix B — Current HepPolyhedron interface
4.1 Current specialised sub-classes

(In cryptic notation)
HepPolyhedronBox (dx,dy,dz)
HepPolyvhedronTrdl (dxl,dx2,dy,dz)
HepPolyhedronTrd2 (dxl,dx2,dyl,dy2,dz)

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

Enhanced Trajectories

Joseph introduced the topic

*Already discussed during Visualization Summary talk
*OK with Vis group to proceed

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

Generic Cuts on Attributes

Joseph introduced the topic

m Develop a scheme to make trajectories or hits invisible and/or culled based on
physics attributes

Use the G4AttValues that are already set for trajectories or hits (at least in some of
the existing examples such as A01 and REOQ1).

Enhanced trajectories will be able to have color, line width, etc. changed based on
some attributes

The additional requirement is to make something invisible based on some attribute

Invisible is not the same as setting a color

= Objects that are set invisible may later be made visible by some interactive graphics
systems (such as HepRep)

= At that point, they still need a color

What about culling?

= In geometry, we find some cases where we want invisible objects culled, other cases where
we do not want these culled

= Same could apply to trajectories
Future Work Item
Guy pointed out that this may benefit from a “filter” design

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

Web Services of Geant4

Hajime introduced the topic

m See Hajime’s other talk today on this topic

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

DAWN Web Service

Joseph introduced the topic

Accept that some users are not going to have DAWN on their own machine

So one could set up a web based service.
You fill out a form to tell it where to find your .prim file

You fill out some other parameters that are the equivalent to running the DAWN
setup GUI on your local machine

You tell it your email address
You then hit the submit button and walk away

Some time later, you get an email that tells you where to pick up your completed
eps file

Could also have options to process the file through DAWNCUT or DAVID.

Could even generate more views that you had asked for after the first one
(if it had spare CPU capacity)

Well defined-project in need of an enthusiastic web-services developer
= Volunteers?

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

Integrated visualization of field-lines (electric and magnetic)

Joseph introduced the topic

m Demonstration work was done by Laurent Desorgher

s More general implementation requires separation of
kernel and vis driver parts

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

Simplified switching among multiple vis drivers at event-level
Joseph introduced the topic

Current solution is for user to explicitly save and reuse random
seed

Would be better to somehow automate this process
Watch out for case of accumulating multiple events or multiple runs

Will need to transfer scene information from one scene handler to
another

Transfer already works for some of the drivers, not for others

It is a problem of “replaying” the view parameters

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

Visualization for new Scorers

Joseph introduced the topic

Useful new classes from Tsukasa and colleagues
Vis Group should provide solutions to easily show these hits
What is to be visualized is a surface
= plane, surface of sphere, etc., not a 3D field
For each hit on this surface, just need to represent a single scaler

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

Issues around static objects
Guy introduced the topic

m static objects cause problems for DLLs on Windows
= CLHEP Transform3D::ldentity
m G4VisAttributes::Invisible

= John Allison will handle Invisible
= replacing the static with getinvisible()

= Guy or John will handle Transform3D::Identity

= Cannot change this in CLHEP itself, but can just instead use the
default constructor of Transform3D

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

Python Interfaces

See Koichi’s talk from this morning’s Plenary

Python Bus 6UI (Qt)
2r Application Web Applicc

Analysis
modules

Nov 2005

Some Future Considerations for Python Interfaces

Hajime introduced the topic

s Geant4Py gives possibility to touch not only visualization and
Interfaces, but to touch some part of Geant4 kernel

= A next step might be to expose all of the Vis objects to Python

= A later step might entirely separate vis from intercoms, making all
VIS communication go through python

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

Visualization for Parallel Geometries

Tsukasa introduced the topic

Just something we must keep in mind as we move forward with the
work on parallel geometries

Vis group will keep an eye on this
Relationship to new scoring classes

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

Appendix: Complete Text of Boolean Operations Proposal

G4Polyhedron Discussion Document (Draft 26/10/05)
1 Background

The original G4Polyvhedron was written by Evgeni Tchemaev. At some stape, it
became HepPolyhedron, with a view to incorporatimg in CLHEP;, G4Polyhedron
became a simple wrapper.

HepPolyhedron defines a three dimensional shape in terms of a set of facets. The
facets are triangles or planar quadnlaterals. The vertices of the facets are specified by
indices into a vector of vertices. Several specialised sub-classes implement commen
shapes, such as box and tube, that are used by commaon Geantd solids. Note that not
all Geant4 shapes are able to provide G4Polyhedron representations at present — see
Appendix A. Access methods are provided to retrieve information for the
visualisation scene handlers (Appendix B summarises the current interface).

A sipnificant part of HepPolyhedron is the Boolear processor, allowing union
(addition), intersection and subtraction. The algorithms for these operations are
complex and it is difficult to avoid numerical problems. There are also logical
problems well known in solid peometry. Unfortunately, this pives rise to one of the
most commaon problem reports - see User Forum: Visualization threads 5,51, 79, 87,
142, 168, 232 and Geometry threads 19, 48, 55, 65, 73, 130, 152, 281, 348, 430.
Although this is not a geometry problem, if often gets reported there. Some of the
earlier problems are fixed, but a residue remains.

2 Proposal

The problems of Boolean processing are complex and difficult. The algorithms need a
thorough rethink. They were written many years ago. Expertise and familiarity with
the code have faded away. It is not simply a matter of refining the algorithms, but of
redesigning them using best current practice. In particular, we think that robustness
can only be puaranteed by the introduction of the concept of tolerance, much as in
Geantd geometry tracking. We think that the only way forward is a rewrite.

A simple glance at the missing or incomect representations (see Appendix A) or at the
features of the existing code (see Appendix B} will convince you that this is ro small
job. Based on Evgeni's experience, we estimate that a rewrite will take at least | man
vear of effort. From that we hope to get robust more efficient and complete code.

The proposal is:
* Reimplement existing functionality, including:
o Improved algorithms for Boolean processing;
o Caching of normals (for speed);
Offer the option of user-supplied normals (for space saving and speed),
Add a new Boolean operation — cut — that creates open polyhedra for cutaway
views;
Complete the implementation of polyhedron representations of all Geantd
shapes.

John Allison
Evgeni Tchemaev
26® October 2005

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

Appendix: Complete Text of Boolean Operations Proposal

Nov 2005

3 Appendix A - Geant4 shapes currently without
proper polyhedron representation

3.1 Returning an incorrect polyhedron

A1l BREPS return a simple bounding box by inheritance of
G4BREPSolids — except C4BREPSolid, C4BREPSolidPCone and
G4BREPSolidPolyhedra, which are correctly implemented.

G4Hype returns a tube

G4Polyvhedra when conatructed using “generic parameters”
gives "HepPolyhedronPgon: error”

C4TwistedBox returns a simple box
C4TwistedTrap returns a simple trapezoid
G4TwistedTrd returns a simple Trd

G4TwistedTubs returns a simple Tubs

3.2 Others simply not implemented
C4ClippablePolygon.cec

G4Polycone (when constructed using “generic parameters”)

4 Appendix B - Current HepPolyhedron interface
4.1 Current specialised sub-classes

{In cryptic notation)

HepPolyhedronBox (dx,dy,dz)
HepPolyhedronTrdl (dxl,dx2,dy,dz)
HepPolyhedronTrd? (dxl,dx2,dyl,dy2,dz)

HepPolyhedronTrap
(dz,theta,phi,hl,bll,t11,8lpl, h2,bl2,t12,alp2)

HepPolyhedronPara (dx,dy,dz,alpha,theta,phi)
HepPolyhedronTube (rmin,rmax,dz)
HepPolyhedronTubs (rmin,rmax,dz,phil,dphi)
BepPolyhedronCone (rminl,rmaxl,rmin2,rmax2, dz)

HepPolyhedronCons
(rminl,rmaxl,rmin2,rmax2,dz,phil,dphi)

HepPolyhedronPgon
(phi,dphi,npdv,nz,z(*),rmin(*),rmax(*))

HepPolyhedronPcon (phi,dphi,nz,z{(*),rmin(*),rmax(*))
BEepPolyhedronSphere (rmin,rmax,phi,dphi,the,dthe)

HepPolyhedronTorus (rmin,rmax,rtor,phi,dphi)

Appendix: Complete Text of Boolean Operations Proposal

HepPolyhedronEllipsoid (dx,dy,dz,zoutl, zcut?)
HepPolyhedronEllipticalCone (dx,dy,z,zcutl)
4.2 Other creation methods

int createTwistedTrap({double Dz,
const double xyl[]1[2
const double xy2[]1[2

]
]

r
)i
4.3 General creation method
int createPolyhedron({int Nnodes, int Nfaces,
const double xyz[][3],
const int faces[][4]);
4.4 Boolean operations
BEepPolyhedron add(const HepPolyvhedron &p) consk;
HepPolyhedron subtract (const HepPolyhedron &p) const;

HBepPolyhedron intersect(const HepPolyhedron &p) consk;

4.5 Surface and Volume

double GCetSurfacelrea() const;

double GetVolume{) const;

4.6 Access methods
int CetNoVertices() const { return nverk;
int GetMoFacekts() const { return nface; }
HepPolyhedron & Transform(const HepTransform3D &
bool GetMextVertexIndex
(int & index, int & edgeFlag) const;
HepPoint3D GetVertex{int index) const;

bool CetMextVertex

(HepPoint3D & vertex, int & edgellag) const;
bool CetNextVertex

(HepPoint3D & vertex, int & edgellag,

HepNormaldD & normal) const;
bool CetNextEdgeIndeces

{int & i1, int & i2, int & edgeFlag,

int & ifacel, int & iface?) const;
bool GetNextEdgeIndeces

(int & il, int & i2, int & edgeFlag) const:
bool GetNextEdge

{HepPoint3D &pl, HepPoint3D &p2, int &edgeFlag) const;
bool CetNextEdge

(HEepPoint3D &pl, HepPoint3D &p2, int sedgeFlag,

Nov 2005 int &ifacel, int &iface2) consk;

Appendix: Complete Text of Boolean Operations Proposal

void GetFacet
(int iFace, int &n, int *iNodes,
int *edgeFlags = 0, int *iFaces =

void CetFacet
(int iFace; int &n, HepPoint3D *nodes,
int *edgeFlags = 0, HepNormal3D *normals = 0) const;

bool CetMNextFacet
(int &n, EHepPointiD *nodes,
int *edgeFlags=0, HepMNormallD *normals=0) const;

HepMormallD CetMormal({int iFace) const;
HepHormal3D GetUnitNormal(int iFace) const;
bool GetNextNormal (BepNormaliD &normal) const;

bool GetMNextUnitNormal (HepMormal3iD &normal) const;

Nov 2005 Visualization and (G)UI Parallel Sessions J. Perl

