Recent developments in GEANT4-related activities at ESA: physics, tools, interfaces

G.Santin*, P.Nieminen, A.Mohammadzadeh, R.Lindberg, H.Evans*, E.Daly

ESA / ESTEC

*Rhea System SA

Giovanni.Santin@esa.int

Geant4 Simulations in the Space domain

- Simulations in Space domain are just one element in a big picture going from
 - Design, to Construction, Integration, Testing, Launch, Operation
 - In an environment in which commercial companies and not academia are the main players
- Geant4 has been a strategic choice for ESA
 - Advanced physics
 - Extendibility (OO design)
 - Interfaces (Geometry/CAD, visualization, post-processing, analysis)
 - Open source approach (plus code transparency)
 - Long term support in a collaborative world wide effort
- ESA is member of the Geant4 Collaboration since 1997
- Two communities of Geant4 Space Users
 - Science
 - Industry

Areas of attention

- Physics
- Interfaces
- Usability

Outline

- 1. Physics models
- 2. Interfaces
- 3. (Engineering) Tools

1. Physics models

- 1. Physics models
 - Scientific Exploration:Low En EM
 - Manned space flight:Even Lower En EM and physics for hadrons
- 2. Interfaces
- 3. (Engineering) Tools

Simulations of the Space Radiation Environment

Sources

(Extra) Galactic and anomalous Cosmic Rays

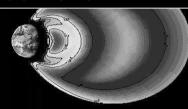
Protons and lons

 $\langle E \rangle \sim 1 \text{ GeV}, E_{max} > 10^{21} \text{ eV}$

Continuous low intensity

Solar radiation

Protons, some ions, electrons, neutrons, gamma rays, X-rays...


Softer spectrum

Event driven – occasional high fluxes over short periods.

Trapped radiation

Electrons ~< 10 MeV

Protons ~< 10² MeV

Goals

Mission design

Ground tests

Extrapolation to real life in space

Cheaper than accelerator tests

Science analyses

Particle signal extraction

Background

Degradation

Environment models

Simulation of the emission and the propagation of radiation in space

Effects

Effects in components

Single Event Effects

(SE Upset, SE Latchup, ...)

Degradation

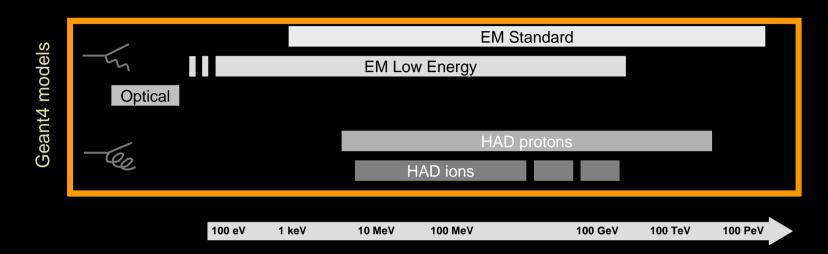
(Ionisation, displacement,...)

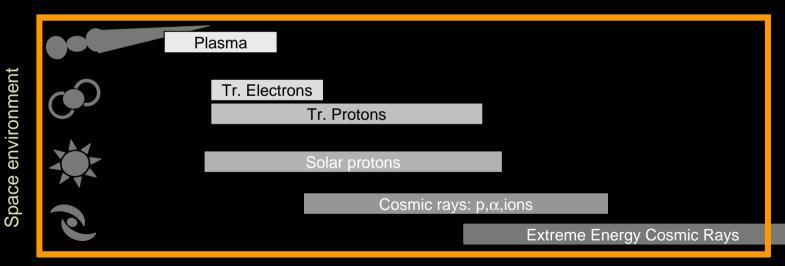
Effects to science detectors

Background

(Spurious signals, Detector overload,...)

Charging

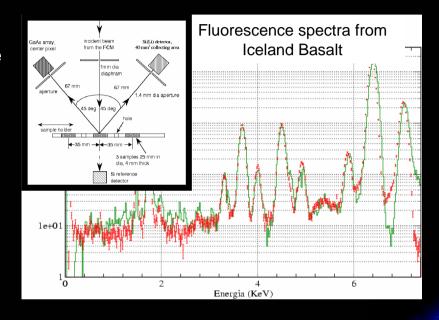

(internal, interferences, ...)


Threats to life

Dose (dose equivalent) and dose rate in manned space flights

Radiobiological effects

Space environment and Physics models



Mercury BepiColombo X-ray spectrometer

- Rock samples irradiation and fluorescence emission measurement
 - Geant4 atomic deexcitation
 - Physics validation
 - Creation of a reference database
- The simulation reproduces:
 - Complex geological materials
 - Experimental Geometry
 - Response and efficiency of the detector



Geant4 DNA

- Damage mechanisms
- Interactions of Radiation with Biological Systems at the Cellular and DNA Level

Human phantom library
Applications in radiation
protection, therapy protocol
studies

Analytical model G.Guerrieri INFN Genova

- Electromagnetic interactions in liquid water down to ~7.5 eV
 - e⁻, p, H, He
- Validation: two independent computations by LPC Clermont & CENBG from literature

e Total cross section e Angular distribution

Energy deposit

Rutherford + screening factor

Brenner Emfietzoglou

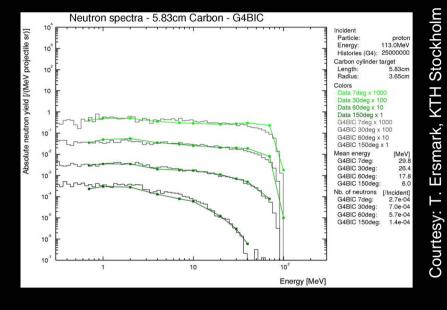
No models

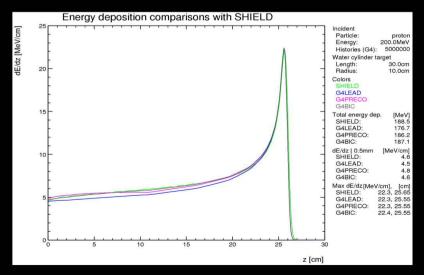
p energy distribution

Analytical

Tabulated


e, H, He, H, He++ energy distribution

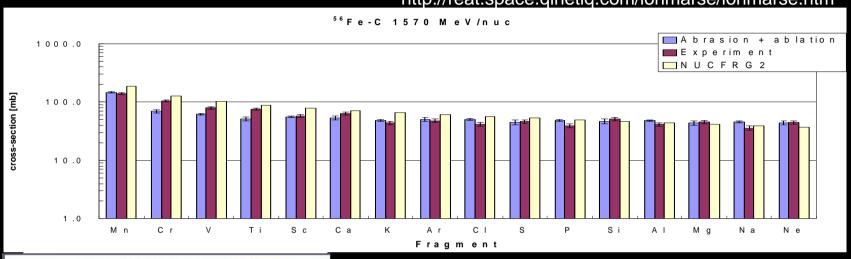

Tabulated

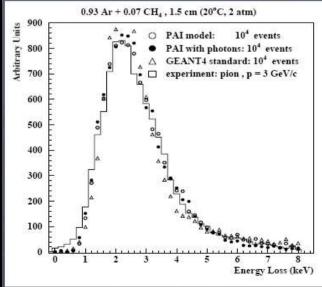


IEEE Trans. Nucl. Sci., 51, Issue: 4, 1378-1384 (2004).

DESIRE Physics validation

DESIRE web page: http://gluon.particle.kth.se/desire





CERN

Physics for hadrons (ions) in GEANT4

- ESA IONMARSE (P.Truscott, Qinetiq)
 - New nuclear-nuclear cross sections
 - Abration/Ablation (Wilson) in Geant4
- HADI (V.Ivantchenko)
 - Hadron and Ion models
- Also important for SEE studies

2. Interfaces

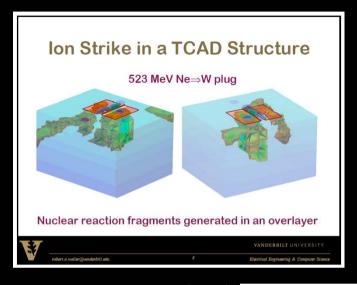
- 1. Physics models
- 2. Interfaces
 - Materials
 - CAD geometries
 - SPENVIS
- 3. (Engineering) tools

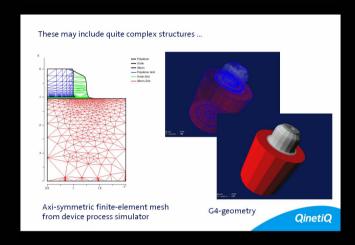
NIST Material Database

HADI, ESTEC, 04.03.2005

NIST materials in Geant4

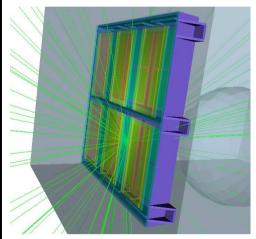
### Elementary Materials from the NIST Data Base			### Compound Materials from the NIST Data B			
Z Name ChFormula	density(g/cm^3) I((eV)		ChFormula	density(g/cm^3)	I(eV)
G4_H H_2	8.3748e-05	19.2	======= 13 G4_Adip		 0.92	63.2
G4_He	0.000166322	41.8	1	0.119477		
G4_Li G4_Be	0.534	40	6	0.63724		
G4_Be	1.848	63.7	7	0.00797		
G4_B G4_C	2.37	76 81	8	0.232333		
G4_C G4_N N_2	0.0011652	82	11			
G4_0 0_2	0.0011032	95	12			
G4_F		115	15 16			
G4_F 0 G4 Ne	TOTAL TOTAL TOTAL	137	17			
1 G4_Na	0.971	149	19			
2 G4 Mg	1.74	156	20			
3 G4_Al	2.6989	166	26			
4 G4_Si	2.33	173	30			
			4 G4_Air		0.00120479	85.7
			- 6	0.000124		
NIST Elementary Materials			7	0.755268		
NIST Compounds			8	0.231781		
			18	0.012827	200	222
Nuclear Materials			2 G4_CsI	0.47600	4.51	553
Space Materials?			53 55			
Space Mate	liais:		233	0.32308		


V.N. Ivanchenko



V.Ivantchenko

(ESA contract)


CAD Interface

QinetiQ (2005)

Vanderbilt University (2005)

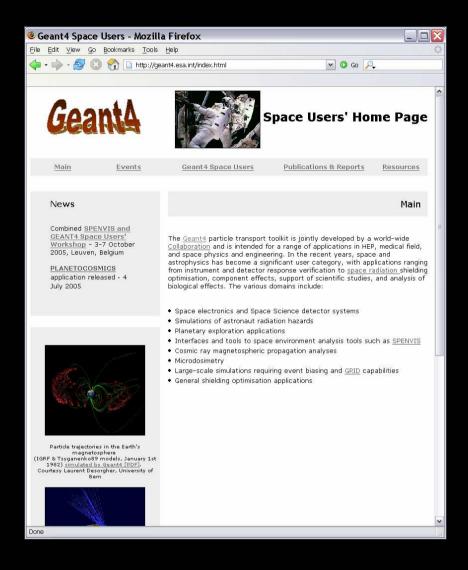
EFACEC (2005)

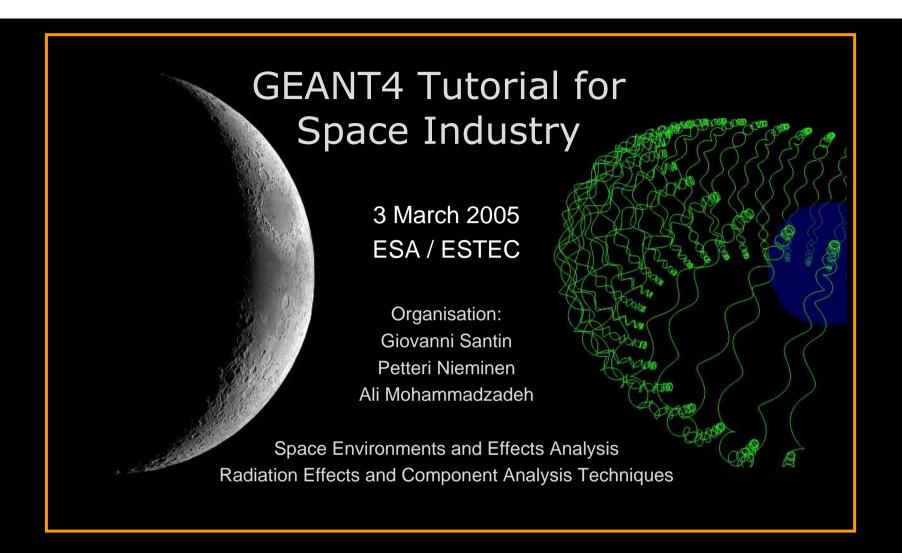
- Several examples of existing interfaces
- ESA ongoing contract (QinetiQ+sub.) to develop public prototype
- Future contract (2006) to integrate GEANT4 interface with GUI

SPENVIS Space Environment Information System

Model packages - Konqueror Location Edit View Go Bookmarks Tools Settings Window Help Space Environment Information System Models and tools for the space environments effects analysis Location: http://miura.oma.be/spenvis/htbin/spenvis.exe?%23chl Also GEANT4-based models SPENVIS DEVELOPER Project: JWST Model packages Web Interface Coordinate generators Mission model Radiation sources and effects Orbit, attitude Radiation sources Trapped proton and electron fluxes Trapped proton flux anisotropy Space environment models Solar proton fluences Damage equivalent fluences for solar cells Dose models for simple geometries Radiation transport Sectoring analysis for more complex geometries Multi-Layered Shielding Simulation (Mulassis) Simulation engine Single event effects Ion energy and LET spectra Effects Analysis Spacecraft charging Damage mechanisms Atmosphere and ionosphere Magnetic field Charging Meteoroids and debris SEE Data base queries Miscellaneous Effects to humans ECSS Space Environment Standard The models implemented in SPENVIS are combined in the packages listed above. Clicking on a package name will expand the table with a list of models. Some model suites have to be executed in a prescribed order Model links will not be available when pre-required runs have not been

SPENVIS / GEANT4 Space Users Workshop 3-7 Oct 2005

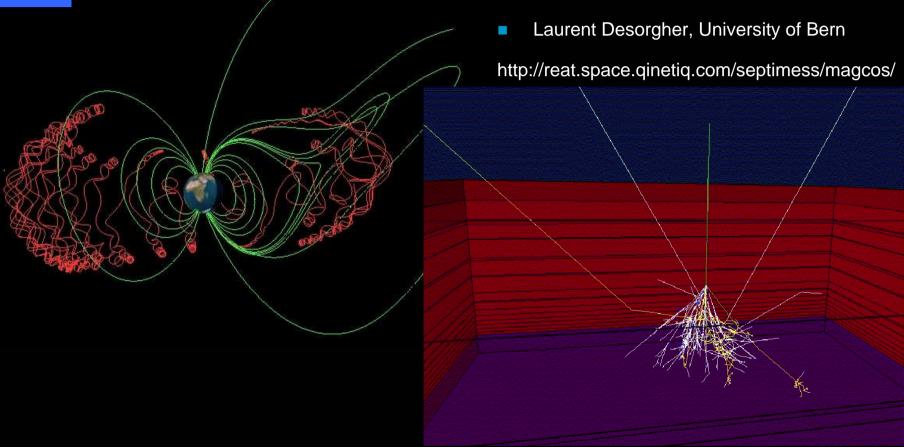

- Joint session: GEANT4 tools in SPENVIS (now or in the near future)
 - MULASSIS
 - MAGNETOCOSMICS
 - GRAS
 - GEMAT


Geant4 Space Users

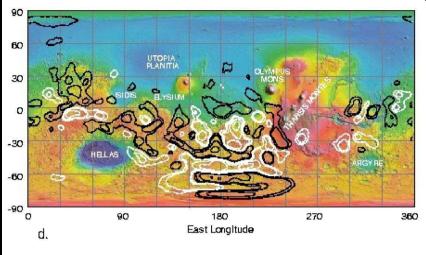
- Gather and help the GEANT4 space user community
- New web page
 - User list
 - Related publications
 - Resources (codes...)
 - Related events
 - _ ...
- Events
 - Tutorials
 - Space User Workshops
 - **–** ...

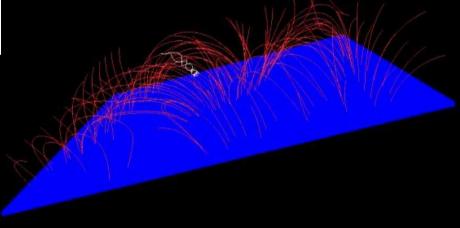
http://geant4.esa.int

- GEANT4-based tools for Space: **SSAT, QARM, MULASSIS, GRAS**
- ~30 people (despite heavy snowfall, block of Amsterdam airport,...)
- Attendees from industry (not only space) and research institutes


3. (Engineering) tools

- 1. Physics models
- 2. Interfaces
- 3. (Engineering) tools
 - PlanetoCosmics
 - SSAT
 - MULASSIS
 - GEMAT
 - NIEL
 - GRAS


PlanetoCosmics Cosmic Rays in planetary Atmo- / Magneto- spheres



PlanetoCosmics Mars field and atmosphere

NASA Mars-GRAM2001 model

Geant4 implementation courtesy L. Desorgher, University of Bern

SSATSector Shielding Analysis Tool

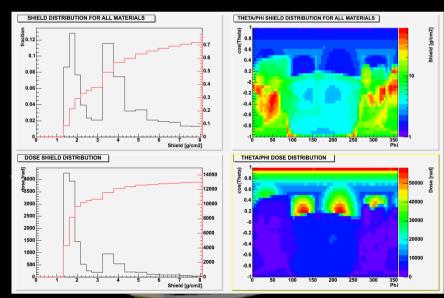
 Ray tracing: from a user-defined point within a Geant4 geometry

SHIELDING

shielding levels

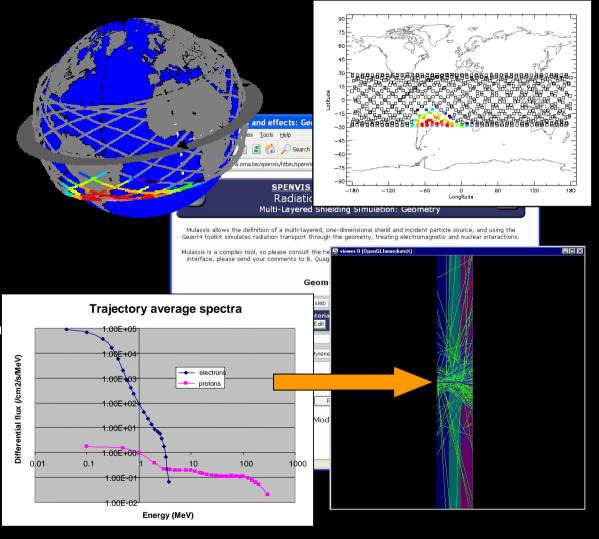
fraction of solid angle for which the shielding is within a defined interval

global and from single materials


- shielding distribution
 - the mean shielding level as a function of look direction
- It utilizes geantinos

QinetiQ

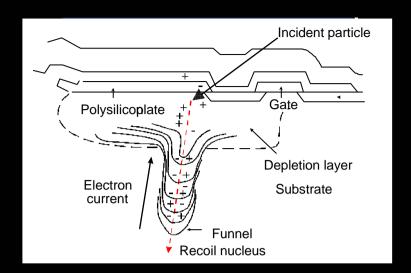
DOSE

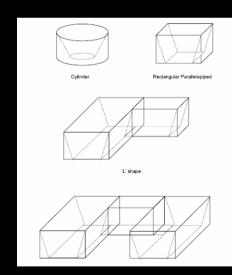

- Estimate of the dose at a point
 - Based on external Dose-Depth curve
 - E.g. SHIELDOSE-2 curve [rad VS g/cm²]
 - Ray-by-ray dose calculation
- Results:
 - Total dose
 - Dose-Depth profile
 - Dose directionality

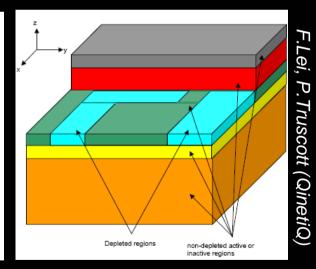
ConeXpress model: R.Lindberg, ESA

MULASSIS Multi Layered Shielding Simulation

- Layer Geometry
- Physics list choice
- Analysis capabilities
 - Dose
 - Pulse Height Spectrum
 - lon. dose
 - NIEL
 - Dose equivalent calculation
- Web interface
- Primary particle spectrum and from SPENVIS
 - Trapped protons
 - Solar protons
 - Trapped electrons
 - ...



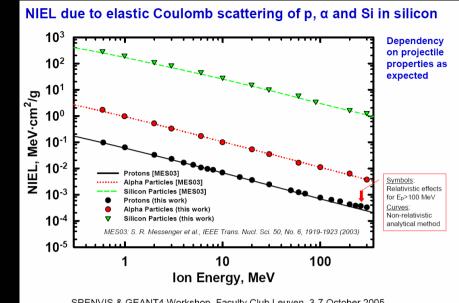

GEMATGeant4 Microdosimetry Analysis Tool

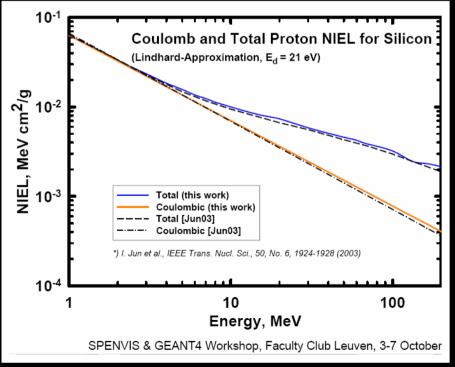

AIM

Single Event Effects in microelectronics

- Dedicated geometry builder UI
- Dedicated physics list
- Built-in analysis modes
 - PHS: SEU rates
 - Path-length

 Analogy with medical microdosimetry for physics models




AIM

Facilitate qualification procedure for new electronic devices used in space missions

- Displacement Damage (DD) in semiconductors induced by NIEL
- Performance degradation of electronics components
- **Uses Screened Coulomb scattering**
 - Implementation by Vanderbilt University Nucl Instr Meth B 227, Issue 3, 420-430 (2004)

SPENVIS & GEANT4 Workshop, Faculty Club Leuven, 3-7 October 2005

GRAS

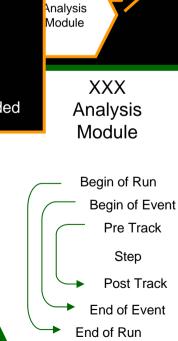
GEANT4 Radiation

Analysis for Space

- Detector / Component effects
 - Dose, Fluence, NIEL, charging...
 for support to engineering and scientific design
- Human dosimetry
 - Dose Equivalent, Equivalent Dose for ESA exploration initiative
- 3D geometry
 - GDML format, or existing C++ class

GRAS open distribution

GRAS Run Manager


http://geant4.esa.int

GEANT4

- Working on Windows distribution
 - InstallShield
 - AIDA/OpenScientist (Win) included

GRAS

- Ready-To-Use tool
 - Different analyses set without re-compilation
- Modular / extendable design
- Integration with GATE under investigation
 - Many commonalities
- Is being integrated into SPENVIS

IEEE Trans.Nuc.Sci. 2005 (accepted)

Your

results

GRAS

results

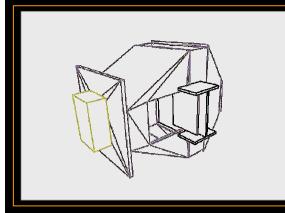
25

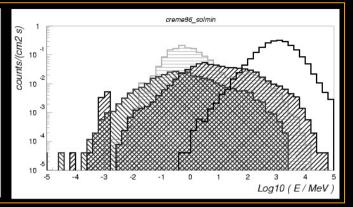
Your

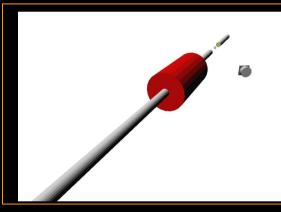
analysis

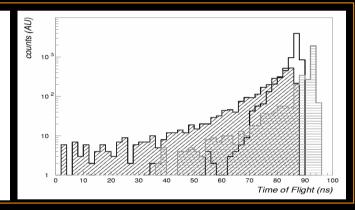
Analysis

Module

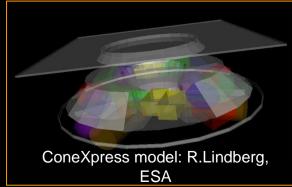

Analysis Module


Analysis

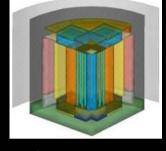

Module



GRAS use cases



- JWST background
- TOF for neutron production exp.
- Total Dose in ConeXpress


Interface GEANT4 to CAD GUI (or CAD GUI to GEANT\$)

- Physics
- Radiation Environment
- Analysis type

Geometry modeling

Geometry exchange format

- GDML
- CAD / STEP
- ...

Planned developments

- Radiation Effects on Advanced Technologies Models and Software (Part II)
- MEO Electron Environment Models development (2006)
- Martian Radiation Environment Models; AO published in Oct 2005 Extension of the developments presented in this Workshop + Geant4 heavy ion hadronic physics work + "active shield" concept analysis. Focus on ESA ExoMars mission.
- Preparatory Study of Investigations into Biological Effects on Radiation (AO now closed)
- Long-term R&D roadmap for the Exploration programme existing

Conclusions

- GEANT4 studies essential part of human space mission design and optimization
- Increased use of Geant4 in space thanks to tools and applications
- Extensions of present physics and interfaces required for manned and unmanned space missions
- Synergies with medical activities to address critical areas of improvement
 - Interfaces
 - Physics model extensions
- Fruitful collaboration in the past among ESA, GEANT4 collaboration, academia and external institutes

http://geant4.esa.int

Giovanni.Santin@esa.int

