Significance of time-dependent geometries for Monte Carlo simulations in radiation therapy

Harald Paganetti

MASSACHUSETTS GENERAL HOSPITAL

HARVARD MEDICAL SCHOOL
Modeling time dependent geometrical setups

Key to 4D Monte Carlo:

Geometry changes during the simulation via C++ class architecture based on GEANT4

Geometry update command in DetectorMessenger

DetectorConstruction:

```cpp
rot_RMW = new G4RotationMatrix();
rot_RMW->rotateZ(Wheel_angle*degree);
RMW_Phys -> SetRotation(rot_RMW);
G4RunManager* theRunManager = G4RunManager::GetRunManager();
theRunManager->DefineWorldVolume(WorldPhys);
theRunManager->GeometryHasBeenModified();
theRunManager->ResetNavigator();
```
Modification of the GEANT4 source code

Instead of re-doing the optimization for the entire geometry, only re-optimize parts of geometry
Types of variations:
- IMRT: moving leaves
- Tomotherapy: rotating beam
- Protons: rotating wheel
- IMPT: changing magnetic field
Proton Therapy
Proton Beam Therapy

Goal 1: Modulation in depth (energy variation)

Goal 2: Lateral modulation (broad beam)
4D Monte Carlo: Scanning Magnet
4D Monte Carlo: Range Modulator Wheel

<table>
<thead>
<tr>
<th>Depth [mm]</th>
<th>Dose [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>150</td>
<td>60</td>
</tr>
<tr>
<td>200</td>
<td>80</td>
</tr>
</tbody>
</table>
4D Proton Delivery

Tumor in the Paranasal Sinus

>95% prescription dose (dark red), >80% (red), >70% (orange), >60% (yellow), >50% (green), >30% (blue), ≤30% (dark blue)
4D IMRT
4D IMRT delivery

CORVUS plan

Monte Carlo
Step-and-Shoot

Monte Carlo
Sliding-Window
Dynamic Systems in Radiation Therapy
- Breathing Patient -

• posterior view
• posterior cut

© Eike Rietzel
Time-resolved anatomy using 4D CT

© Eike Rietzel
Four-dimensional Monte Carlo simulation based on 4D CT

Inhale

Intermediate

Exhale

Graph showing dose-response curves for GTV and CTV.
Four-dimensional Monte Carlo simulation
- Based on 4D CT information -

Volume Displacement Information

Software: CISG Kings College London
[T.Hartkens, BVM 2002, Springer-Verlag, March 2002]
4D Dose Deposition

Beamlet 1

Beamlet 2

A B C D E
F G H I J
K L M N O
P

T = t₁

T = t₂
4D Dose Deposition

Dose deposition defined via voxel identifiers, not position in space!
Dose calculation during non-rigid motion

\[T = t_1 \]

\[T = t_2 \]
Four-dimensional Monte Carlo simulation based on 4D CT

Solid lines: Patient in inhale
Dashed lines: Considering the entire breathing phase
Moving patient in IMPT (double dynamic)
Single-dynamic (patient movement; static beam delivery)
Double-dynamic (patient movement; dynamic beam delivery)

Effect can be reduced by ‘repainting’
4D Monte Carlo of IMPT

- Beamlets and patient are moved continuously (rigid)

- Assumptions:
 - Irradiation time per slice is 0.4 seconds (on average)
 - Changing the cyclotron beam energy with a degrader takes a few seconds
 - Breathing cycle is 4 seconds

- Choose a specific scanning pattern
- Choose a specific number of protons per second
- Update the beam delivery setup and the patient setup every 0.1 virtual seconds
4D Monte Carlo of IMPT

DVH for left anterior field

- Static
- Patient moves ±0.5 cm
- Patient moves ±1.5 cm
- Patient moves ±0.5 cm; repainting
- Patient moves ±1.5 cm; repainting
Conclusion

Four-dimensional Monte Carlo (based on GEANT4) is a technique capable of simulating geometry variations (beam delivery or patient) during dose calculation. The technique allows the investigation of interplay effects for any given dose rate.
ACKNOWLEDGMENTS

Hongyu Jiang (GEANT4)
Eike Rietzel (4D CT)

NIH/NCI grant # P01 CA 21239
NIH/NCI grant # R01 CA 111590

PUBLICATIONS

Paganetti “Four-dimensional Monte Carlo …”
Phys Med Biol 2004: 49, N75-N81
Paganetti et al “Monte Carlo simulations with time-dependent …”
Int J Radiat Oncol Biol Phys 2004: 60, 942-950
Paganetti,Jiang,Trofimov “4D Monte Carlo simulation of proton beam …”
Phys Med Biol 2005: 50, 983-990