
Possible issues to optimize 
stochastic simulation time 

with parallel sequences and 
unrolling techniques

David R.C. Hill and Romain Reuillon

romain.reuillon@isima.fr

LIMOS – UMR CNRS 6158

Université Blaise Pascal

ISIMA, Campus des Cézeaux BP 10125

63177 Aubière Cedex

FRANCE



Parallelism in Monte Carlo Applications

� Computationally intensive but naturally parallelComputationally intensive but naturally parallelComputationally intensive but naturally parallelComputationally intensive but naturally parallel
� Appropriate for independent Appropriate for independent Appropriate for independent Appropriate for independent bagbagbagbag----ofofofof----work work work work paradigmparadigmparadigmparadigm
� Fits the distributed computing paradigmFits the distributed computing paradigmFits the distributed computing paradigmFits the distributed computing paradigm
� Requirements :Requirements :Requirements :Requirements :

� Independence of underlying random number streamsIndependence of underlying random number streamsIndependence of underlying random number streamsIndependence of underlying random number streams
� SPRNG SPRNG SPRNG SPRNG 

�(Scalable Parallel Random Number Generation) library(Scalable Parallel Random Number Generation) library(Scalable Parallel Random Number Generation) library(Scalable Parallel Random Number Generation) library



« Random number generators, particularly for 
parallel computers, should not be trusted. » 

� It is necessary that RNG can be generated in parallel (ie each 
process may have an autonomous access to a sub-sequence 
issued from a common global sequence (for correlation 
problems))

� If such an autonomy is not guaranteed, the potential parallelism of 
the application is affected (if for instance processes access to a 
central RNG, even if this generator is also run in parallel)

� The main problem is to find partitioning techniques which preserve 
the good properties required to guarantee not only the efficiency 
of the simulation but mainly the credibility of the results (L’Ecuyer
proposed an interesting approach in 2001)

Paul Paul CoddingtonCoddington



� prop. 1 : numbers are uniformly generated
� prop. 2 : the sequence is uncorrelated
� prop. 3 : the sequence is reproducible
� prop. 4 : the generator is portable on any computer
� prop. 5 : the sequence can be changed by

adjusting a seed or a status
� prop. 6 : the period is as large as possible
� prop. 7 : the generator satisfy any randomness test
� prop. 8 : a quick generation is obtained
� prop. 9 : the generator uses a limited computer memory

RequirementsRequirements



Requirements for Parallel RNGs

�prop. 10 : it is easy to split the numbers 
into many independent sub-sequences that 
are allocated to different LPs, without the 
need of communication or synchronization;
each sub-sequence is a good sequential 
RNG

�prop. 11 : there is no correlation between 
the sub-sequences on different LPs 
(crossed-correlation)



� The LF (Leap Frog) technique:
partitioning a sequence {xi, i=0, 1, …} into ‘n’ sub-sequences, the jth
sub-sequence is {xkn+j-1, k=0, 1, …}

� The SS (Sequence Splitting or Cycle Splitting) technique:
� Partitioning a sequence {xi , i=0, 1, …,} into ‘n’ sub-sequences

The jth sub-sequence is {xk+(j-1)m , k=0, …, m-1}
where m is the length of each sub-sequence

� The user deterministically chooses widely separated seeds in same
generator.

� The IS (Independent Sequences or Cycle Splitting) technique:
� Using randomly generated seeds
� Using different parameters for the same kind of generator (example 

Matsumoto and Nishimura MT) => need theoretical studies of 
mathematical properties at first.

Parallelizing RNGs : partitioning methods



"Long-Range"correlation problem:
auto-correlation

x
0

x
4

x
8

x
12

x
1

x
5

x
9

x
13

x
2

x
6

x
10

x
14

x
3

x
7

x
11

x
15

Leap Frog Technique



Sequence splitting technique

"Long-Range" correlation problem :
Crossed-correlation

x
0
x
1

x
2

x
3

x
4
x
5

x
6

x
7

x
8
x
9

x
10

x
11

x
12
x
13

x
14

x
15



Independent sequences technique

x
0
x
1

x
2

x
3

x
4
x
5

x
6

x
7

x
8
x
9

x
10

x
11

x
12
x
13

x
14

x
15

x’
0
x’
1
x’
2
x’
3

x’
4
x’
5
x’
6
x’
7
x’
8
x’
9
x’
10
x’
11
x’
12
x’
13
x’
14
x’
15

y’
0
y’
1
y’
2
y’
3

y’
4
y’
5
y’
6
y’
7
y’
8
y’
9
y’
10
y’
11
y’
12
y’
13
y’
14
y’
15

y
0
y
1

y
2

y
3

y
4
y
5

y
6

y
7

y
8
y
9

y
10

y
11

y
12
y
13

y
14

y
15



Reducing "Long-Range" correlations

x
0

x
4

x
8

x
12

x
1

x
5

x
9

x
13

x
2

x
6

x
10

x
14

x
3

x
7

x
11

x
15

Hybrid technique

Hybridizing LF and SS:
partitioning a sequence into ‘n’ sub-sequences,
the jth sub-sequence is {x(kn+j-1)m+s, k=0, … and s=0, …, m-1}
where m is the length of contiguous sub-blocks.



Parallelizing PRNGs : tests
�Theoretical tests:

the random sequences should have the properties of a 
random sample drawn from the uniform distribution.
(Series of Knuth, DieHard tests, L’Ecuyer TestU01)

�Empirical tests:
As stated by Paul Coddington in 1996 : “It is strongly 
recommended that all simulations be done with two or 
more different generators, and the result compared to 
check whether the random number generator is introducing 
a bias ”

The classical approach to test PRNG is to test separately
each sub-sequence, and then to test the entire sequence
generated



Random number generation in Geant4 
: up to 20% of running time

Occupation CPU de CLHEP Pour le Noyau

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200

Nombre de Particules Simulèes

T
em

ps
 d

'E
xé

cu
tio

n

Simulateur

CLHEP



A speedup technique faster than getting RN from 

hardware cards : metaprogramming by 

« unrolling » : URNG

Compilation
and linkage

Generator code Unrolling code

Unrolling executable

Execution

Optimized generator
Source code

Compilation

Optimized generator
binary object

Optimized generator
binary object

Simulation code

Compilation

Simulation binary
code

Linkage

Optimized simulation
executable

Once for all Each simulator compilation

Time consuming

Time consuming



Metaprogramming useless for files larger than 

RAM size => Unrolling with « Memory Mapping »

Compilation
and linkage

Generator code Unrolling code

Unrolling executable

Execution

Binary Array File

Simulation code

Compilation
and linkage

Simulation binary
code

Once for all Each simulator 
run

Time consuming

Execution

Binary Array File
Mapped into Memory

Simulation binary
code



Comparative tests under Linux on 3 common 

generators and the unrolled version  

0

20

40

60

80

100

120

140

160

180
Mean Generation 

Time (in ms)
for1 million 
drawings 

Sobol GSL 74 39 22

Shuffled NR 171 96 63

Quick and Dirty 39 34 8

Unrolled 20 5 4

Athlon 1200+ P4 2,8GHz Xeon 3 GHz



Conclusion

�Acceleration of Monte Carlo methods
�Variance Reduction
�Quasi Monte Carlo
�Optimising number generation
�Parallel Computing

�The best option to reduce Geant4 
computing time is parallel computing

Be careful with random number 
generation !!!!


