Geant4 simulations for microdosimetry at the cellular level and nanobeam design

Sébastien Incerti

on behalf of the Physics Biology group

Centre d'Etudes Nucléaires de Bordeaux - Gradignan IN2P3/CNRS Université Bordeaux 1 33175 Gradignan France

Geant4 2005 November 3rd-10th, 2005

PIXE intermediate image - GEANT4

IN2P3

Institut National de Physique Nucléaire et de Physique des Particules

PIXE target image - GEANT4

The CENBG Physics Biology group in October 2005

Consequences of environmental stress at the biological tissue and cell scales

Two facilities @ CENBG on a state-of-the-art low energy Singletron electrostatic accelerator (p, d, a up to 3.5 MeV)

- a <u>microbeam line</u> (resolution in vacuum < 1 µm) for
 - bio-sample analysis through Scanning Transmission Ion Microscopy, Particle Induced X-ray Emission & Rutherford Back Scattering
 - targeted cellular irradiation in single ion mode

• an upcoming nanobeam line (~2006) mainly for analysis with a resolution in vacuum of about 50 nm

3D microtomography

Claire HABCHI Teaching Assistant Bordeaux 1 University

Duy Thuy NGUYEN Graduate student Ministère des Affaires Etrangères (France)

Low dose irradiation & cellular response

Hervé SEZNEC Research Associate CNRS/IN2P3/SDV

Thomas POUTHIER Graduate student BDI CNRS/COGEMA

Simulations (microdosimetry & ray tracing)

Sébastien INCERTI Research Associate CNRS/IN2P3

Qianmei ZHANG Post-doc fellow Bordeaux 1 University

Why Monte Carlo simulation ?

Looking for a simulation tool able to perform...

True ray-tracing

- ion transport in focusing quadrupoles to characterize the microbeam line performances and predict / adjust the nanobeam line focusing capabilities
- understand and reduce scattering along the line : collimator edges, diaphragms, pipe residual air...
- understand and reduce scattering inside the cellular irradiation chamber : ion detector, extraction window, culture foil where cells attach...

Microdosimetry and cell damage

- estimate the absorbed dose in single ion irradiation mode
- model DNA damage and survival at the cell level
- compare with other irradiation techniques (alpha emitters, macro beam)

3/27

Ray-tracing at the sub-micron scale

Field models for the nanobeam line quadrupole magnets

Gradient computation fully automated with Geant4

16.7577

9.8990726

-12.1492

3D map field

-6.2398758

Comparison in high (PIXE) and low flux (STIM) modes

Geant4 versus TRAX (reference)

- Nice agreement between TRAX and Geant4 (square field model, no map)
- Sharp STIM image, distorted PIXE image (chromatic and spherical aberrations)
- Compatible with probe size requirements
- Pure vacuum, no collimators

Beam optics

$$x_{i} = A_{0} + A_{1}x_{0} + A_{2}y_{0} + A_{3}\theta_{0} + \dots + A_{n}v_{1}^{j}v_{2}^{k}v_{3}^{l} + \dots$$

 $oldsymbol{A}_n$: aberration coefficient of order j+k+l written

$$\mathbf{A}_{n} = \left\langle x \left| \mathbf{v}_{1}^{j} \mathbf{v}_{2}^{k} \mathbf{v}_{3}^{l} \right\rangle \right.$$

Example : $\langle x | \theta \Phi^2 \rangle$ δ

 $\delta = \Delta P \,/\, P = \Delta E \,/\, 2E$

8/27

List of quadrupole dominant aberration coefficients

Order and Type	Coefficients	Remarks
1st INTRINSIC		Horizontal demagnification Vertical demagnification Horizontal astigmatism (zero for correctly focused image) Vertical astigmatism (zero for correctly focused image)
1st PARASITIC		Horizontal translation of quadrupole n Vertical translation of quadrupole n Tilt in xz plane of quadrupole n Tilt in yz plane of quadrupole n MATRIX + RAX TRACING
2nd INTRINSIC		Chromatic aberration ($\delta = \Delta P/P$) Chromatic aberration little effect (small object size) little effect (small object size)
2nd PARASITIC		Rotation of quadrupole <i>n</i> about optical axis (<i>x</i> and <i>y</i> planes coupled) Rotation of quadrupole <i>n</i> about optical axis (<i>x</i> and <i>y</i> planes coupled) Excitation changes (power supply ripple, ε is % change in excitation) Excitation changes (power supply ripple, ε is % change in excitation)
3rd INTRINSIC		Spherical or aperture aberrationSpherical or aperture aberrationSpherical or aperture aberrationSpherical or aperture aberrationSpherical or aperture aberration
5th INTRINSIC	$ \begin{array}{l} < x \mid \theta^{5} > \\ < y \mid \Phi^{5} > \end{array} $	Negligible in current systems Only after spherical aberration has been corrected using octupoles

G. W. Grime and F. Watt, Beam Optics of Quadrupole Probe-Forming Systems, Adam Hilger Ltd., Bristol (1983)

Geant4 ray tracing capabilities

• Calculation up to any order for **TRAX** (ray-tracing reference code in the microbeam community) and **Geant4**, up to order three with **Zgoubi (second reference code)**

- N = 32 rays generated from a point source to reach order 3 in θ , Φ and order 1 in δ
- 32 coefficients A_n extracted from matrix inversion of the 32 ray positions on target

Quantitative predictions : intrinsic aberration coefficients

	Intrinsic aberration coefficients					
	TRAX	Geant4 3D MAP	Geant4 square (1)	Geant4 square (2)		
$D_x = \langle x x \rangle$	6.3557E+01	6.36174+01	6.356E+01	6.3558E+01		
$\langle x \theta \rangle$	-3.4937E-01	-1.04303E+02	5.3677E-01	-4.9865E-02		
$\langle x \theta \delta \rangle$	-2.0354E+03	-2.05255E+03	-2.0331E+03	-2.0328E+03		
$\left\langle x \left \theta \phi^2 \right\rangle \right.$	3.5789E+02	-1.50558E+03	3.5625E+02	3.597E+02		
$\langle x \theta^3 \rangle$	3.0893E+03	▲ -5.4201E+04	3.0893E+03	3.0913E+03		
$D_{y}=ig\langle y yig angle$	9.9409E+01	9.87808E+01	9.9411E+01	9.9413E+01		
$\langle y \phi angle$	-3.6262E-02	-1.59662E+01	1.2357E-01	8.9776E-02		
$\langle y \phi \delta angle$	-3.6979E+02	-3.6385E+02	-3.7019E+02	-3.7018E+02		
$\left\langle y\left heta^{2}\phi ight angle$	2.2920E+02	1.39732E+04	2.2980E+02	2.2916E+02		
$\left\langle y\left \phi^{3} \right\rangle ight.$	1.4896E+02	-8.81738E+02	1.4939E+02	1.4856E+02		

(1) using TRAX's gradients(2) using GEANT4's gradients

3D map : spherical terms dominant

units are $\mu m,\,mrad$ and %

Next tasks

- increase field map granularity around paraxial region and investigate spherical terms dominance & parasitic
- compare with Enge's fringing field model
- use nanobeam line simulation for fine alignment (grid-shadow techniques)
- investigate effect of multiple scattering in very low pressure residual air (Geant4 VS experiment)

Microdosimetry at the cellular scale

Cellular irradiation setups

CENBG Focused Microbeam

Hits and absorbed dose distributions

Number of alpha particles in nucleus

Percentage of hit nuclei

within the parallelepiped cell population irradiated with the CEA/DPTA 9.3 MeV alpha macrobeam. The plain circles represent Geant4 predictions and the dashed curve shows the corresponding <u>Poisson</u> <u>fit</u>, with a mean equal to one. The plain triangles and the dotted curve correspond to a Poisson distribution of mean 2. For illustration, the other plain curves show Poisson fits for means ranging respectively from 3 to 10

Absorbed dose distribution

within an elliptic nucleus for 3 MeV incident alphas. The dose reaches 0.4 ± 0.1 Gy / alpha. About 0.5 % of incident alphas crossing the culture foil hit neighbor cells.

CEA Elec. Sources

Z

Number of alpha particles in nucleus

Percentage of hit nuclei

within the ellipsoid cell population irradiated with the Pu alpha emitter through a mylar thickness of 0.9 μ m for an irradiation time of 5 min 12 s (plain circles), 10 min 24 s (plain triangles) and 15 min 36 s (plain squares). The corresponding <u>Poisson fits</u> are shown. The mean for an irradiation time of 5 min 12 s (dashed line) reaches 0.5 alpha per nucleus and is proportional to the irradiation duration (dot line for 10 min 24 s and mean of 1.0 alpha per nucleus ; dot-dashed line for 15 min 36 s and mean of 1.5 alpha per nucleus).

14 / 27

HaCat nucleus confocal imaging after irradiation

After irradiation with **5** alphas (3MeV)

After irradiation with **50** alphas (3 MeV)

Dedicated keratinocyte cell line expressing the histone H2B-GFP protein and immunofluorescence using an antibobody against phosphoryled H2AX histones (γ-H2AX)

Realistic cellular geometries

- Estimation of the absorbed dose : need for a realistic geometry
- Conversion of confocal microscopy images into Geant4 parameterised volumes
- (G4PVParameterisation) for the cell cytoplasm and the cell nucleus

Stack of 2D confocal images of nucleus marked with H2B-GFP (size 64x64)

VC++ conversion application

- Pixel extraction
- RGB noise subtraction
- Centering
- Voxel local coordinates and intensity

Ellipsoid cytoplasm (KamLAND) (not marked yet)

• Resolutio • Average r

Resolution increase (256x256 and above) expected for cytoplasm and nucleus Average nucleus chemical composition will be measured from STIM, PIXE, RBS @ AIFIRA

Centre d'Etudes Nucléaires de Bordeaux - Gradignan

27 *ו* סו

Going beyond "à la PARTRAC"

Most advanced simulation tool of radiation damage at DNA level

Modular structure written by W. Friedland et al. at GSF, Munich (20 years) :

- simulation of cellular nucleus DNA content Geometry module
 - simulation of proton or alpha interactions through the chosen cell geometry Track structure module
- simulation of secondary electron interactions Track structure module

Geant4 DNA

- simulation of damages to DNA (direct hits and OH. radicals) Effect module
- simulation of chemical effects of species (pre-chemical & chemical) Chemistry module
- extraction of biological damages (ssbs, dsbs, fragments,...) Damage module

PARTRAC simulates processes from the initial irradiation (t = 0) up to t = 10^{-6} s. Repair processes are not simulated yet.

The nucleus geometry in PARTRAC

- human fibroblast cell nucleus
- 46 chromosomes
- 6 Gbp of chromatin
- irregular crossed linker structure
- atom by atom approach (center coordinates and Van der Waals radius)

R. Friedland et al., RPC 72 (2005) 279-286

Geant4-DNA : programme

- Geant4-based "sister" activity to the Geant4 Low-Energy Electromagnetic Working Group
- Simulation of nano-scale effects of radiation at the cell and DNA level
- Three levels
 - Macroscopic : calculation of dose, develop useful associated tools
 - Cell : cell modelling, processes for cell survival, damage etc
 - DNA : DNA modelling, physics processes at the eV scale, processes for DNA strand breaking, repair...
- On-going activities : anthropomorphic phantoms, cell survival models, low energy physics extensions down to the eV scale, etc...
- Key elements
 - Rigorous software process
 - Collaboration with domain experts (biologists, physicians)
 - Team including groups with cellular irradiation facilities

Geant4 DNA Physics processes will be presented in a few days at the

14th Symposium on microdosimetry Venezia, Italy, 13-18 November 2005

by the Geant4-DNA collaboration

and in a few minutes

see Ziad FRANCIS' talk

Centre d'Etudes Nucléaires de Bordeaux

http://www.ge.infn.it/geant4/dna

🚰 Geant4-DNA - Microsoft Internet Explorer

Eichier Edition Affichage Favoris Qutils 2 ↓= Précédente • → - ③ ② ② ▲ ③ Rechercher Favoris ③Média ③ ◎ ↓ → ④ ☑ • ●

Adresse in http://www.ge.infn.it/geant4/dna/

Google - geant4 dna 💽 💽 Rechercher 🕞 🧭 Kouveaul 🛷 🔊 1824 bloquée(s) 🛛 🛃 Options 🤌 🖏 geant4 🖏 dna

Liens මAF මAMEX මBA මFree මFreeNews මG4 මHorde මHP මIN2P3 මLe CENBG මMTO මPJ මRC මRocade මROOT මSD මSFR මSFR මS

_ 🗆 ×

• @OK

額

Home

Requirements

· esa

- Documents
- Talks
- Papers
 Meetings
- Team
- Geant4
 Geant4-INFN
- Geant4 LowE Physics
- And the second second

🍯 Terminé

Geant 4 DNA

Estimating **cancer risk for human exposures to space radiation** is a challenge which involves a wide range of knowledge in physics, chemistry, biology and medicine.

Traditionally, the biological effects of radiation are analysed in top-bottom order, i.e. evaluation of the absorbed macroscopic radiation dose at a given location in the biological tissue is translated to the degree of danger it presents, and dose limits are consequently set that are considered to be acceptable.

A novel approach, based on the new-generation object-oriented **<u>Geant4</u>** Monte Carlo Toolkit, proceeds in a reverse order, from bottom to top, by analysing the nano-scale effects of energetic particles at the cellular and DNA molecule level.

Pictures courtesy of BSA

Cesa Aurora European Programme for the Exploration of the Solar System

The objective of the Aurora Programme is first to formulate and then to implement a European longterm plan for the robotic and human exploration of solar system bodies holding promise for traces of life.

NH

EL SEVIER

Abstract

© 2003 Elsevier B.V. All rights reserved.

1 Introduction

Validations of Geant4 for focused micro & nanobeams

Centre d'Etudes Nucléaires de Bordeaux - Gradignan

25 / 27

Making Geant4 easily available : VMware

👩 Internet

Geant4 for VMware Workstation - Microsoft Internet Explorer	_O×
Ejchier Edition Affichage Fagoris Qutils 2	-
← Précédente - → - 🗿 👔 🖄 QRechercher 🕞 Favoris 🞯 Média 🏈 🛃 - 🎒 🖾 - 🗐	
Adresse 🕘 http://geant4.in2p3.fr/cenbg/vmware.html	. с∂ок
Coogle - C Rechercher - O ^{Houveaul} 🜮 🕾 1840 bloquée(s) 🛛 Options 🥖	
Liens @AF @AMEX @BA @Free @FreeNews @G4 @Horde @HP @IN2P3 @Le CENBG @MTO @PJ @RC @Rocade @R	DOT 🍓 SD 👋

<u>VMware</u> is a software allowing to run on a unique machine (desktop, laptop) two operating systems simultaneously. For example, it allows you to run a virtual Linux machine under a classical Windows PC. The <u>Centre dEndees Nucléaires de Bordeaux-Gradgnan</u>, a <u>CNRS/INZP3 – Bordeaux 1 University</u> laboratory, is happy to provide free of charge to <u>Geant4</u> users a set of four files for <u>VMware</u> <u>Workstation version 4.5 or later for Windows</u>, containing the latest version of Geant4 with <u>Scientific Linux 3.03</u> as well as several utilities (ROOT, Source-Navigator IDE, ...). Once fully decompressed, these files can be read directly by your VMware Workstation software : launch VMware on your PC, open the decompressed files and you will emulate a real Scientific Linux 3.03 machine with the latest version of Geant4 atready installed |

System minimum requirements :

- desktop or laptop PC running Windows with the VMware Workstation software version 4.5 or later installed
- at least a 1 GHz processor (from Pentium III)
- at least 256 Mo of RAM for the virtual machine (it means at least 512 Mo for the PC)
- 10 Go of free disk space available
- a screen resolution of 1280 x 1024 (may be changed with root privileges)

More precisely, the distribution contains :

- Operating system : <u>Scientific Linux 3.03</u>
- Current Geant4 version : 7.1 with all sets of data files
- <u>ROOT</u>
- Source-Navigator IDE
- CERNLIB 2003
- <u>Gimp</u>

🙆 Terminé

• Editors : Lyx, Xemacs, OpenOffice,...

Download the four files corresponding to your VMware version (4.5 or 5.0) (be careful, several compression levels when decompressing). The total compressed files size is about 2 Go and reaches 10 Go when fully decompressed.

Please, read the instructions in the corresponding README (4.5 or 5.0) files before installing.

If you do not own a version of VMware Workstation version 4.5 or later, you may still <u>download</u> the full evaluation version (licence will expire within a few weeks).

Windows

Sc. Linux 3.03

http://geant4.in2p3.fr/cenbg/vmware.html

Thank you for your attention !

