A Geant4-based simulation of irradiation system for hadron therapy

Tsukasa Aso1,2, A. Kimura2, S. Kameoka3,2, K. Murakami3,2, T. Sasaki3,2

1Toyama National College of Maritime Technology
2JST CREST
3KEK

This research was supported by CREST, JST
Introduction

- Particle therapy facilities need “Simulation tools”.
 - Designing irradiation system according to facility specification.
 - Validation of treatment planning in different configuration.
- The “Simulation tool” has to allow users to setup their own irradiation system with minimum coding effort.
 - Usually, implementation of complex geometry is one of the issues.
 - Users want to concentrate on evaluation of physics results.

- Our Strategy for addressing to the requirement
 - A software toolkit for “common software parts” which is specially dedicated to particle therapy system.
 - We provide base/concrete classes for representing irradiation system.
 - (Reusability) The beam module classes may be utilized each other, because, in many case, same or similar geometry modules are used at different facilities.
 - (Extensibility) Users define their own beam modules on the top of the base class. It gives the user a guarantee that beam modules have basic functionalities.
 - The user can setup his/her own irradiation system geometry by combining those software parts.
 - Comparison of results becomes easier on the common framework using our software toolkit.
Overview of Design concept

Our simulation toolkit has three layers structure.

- **Geometry** represents the world volume of the irradiation system.
 - This is basically identical to `G4VUserDetectorConstruction`.

- **Particle Therapy System** represents a particular irradiation system. It consists of available beam modules at the facility.
 - i.e. HIBMC Gantry Nozzle, NCC Gantry Nozzle, etc.

- **Beam Module** represents individual beam module. It involves geometrical information.
 - i.e. Scatterer, Wobbler magnet etc.
Defining Beam Module

- We introduce the base class "G4MVBeamModule", where users define their own beam module geometry.
- This base class is responsible for handling the physical volume of the beam module.
 - Install(uninstall) the module in(from) the beam line.
 - Translate(rotate) the module in the beam line.
- The user may add new beam module classes on this base class.
 - The user has to implement two virtual functions.
 - `buildEnvelope()`
 - `buildNode()`.
 - The "Envelope" represents a master volume of the beam module, while the "Node" represents complex geometries inside the beam module.
Concrete class of Beam Module

- We have already implemented concrete classes of beam modules.
- These concrete classes are enough for describing
 - HIBMC gantry nozzle (Hyogo Ion Beam Medical Center)
 - NCC gantry nozzle (National Cancer Center)
 - NIRS experiment port for IHI (National Institute of Radiological Sciences)
Particle Therapy System

Defining Particle Therapy System

- We provide a base class "G4VParticleTherapySystem".
- The user must define their own particle therapy system on this base class. I.e. “HIBMCGantrySetup”, “NCCGantrySetup”, or “IHIPort” and so on.
- It mandates to implement three virtual methods.
 - `Setup()`
 - The user must register available beam modules in the particle therapy system.
 - `BuildDefault()`
 - At least, only the treatment room (world volume) has to be installed.
 - `UpdateEvent()`
 - The user must describe event by event action.
 - For example, this is a case for wobbling magnetic fields.

G4ParticleTherapySystemMessenger for manipulating beam modules.

- `/G4M/Module/install <Module Name>`
- `/G4M/Module/uninstall <Module Name>`
- `/G4M/Module/select <Module Name>`
 - `/G4M/Module/translate <X Y Z>`
 - `/G4M/Module/rotate <Ox Oy Oz>`
 - `/G4M/Module/typeid < Module’s parameter ID>`
Geometry Builder

- Geometry builder is responsible for selecting a particle therapy system.
 - We provide the base class "G4VGeometryBuilder".
 - It has a virtual method "SystemSelection()", where the particular particle therapy system is instantiated according to the given name.
 - The current particle therapy system object is obtained by static method, G4MVGeometryBuilder::GetSystem() . This is used for accessing functionalities of the particle therapy system and the beam modules.

- G4MGeometryMessenger
 - /G4M/System <PTSname> (Pre_init)
 - /G4M/ChangeSystem <PTSname> (Idle)

- At present, our implementation had realized following facilities.
 - HIBMCGantry (Hyogo Ion Beam Medical Center)
 - NCCGantry (National Cancer Center)
 - IHIPort (NIRS experimental port for IHI)
Demonstration

Contents

- Particle Therapy System Selection
 - HIBMCGantry, NCCGantry, IHIPort
- Installing / Uninstalling of Modules
- Translation / Rotation of Modules
Summary

- We have developed a simulation toolkit for irradiation system of particle therapy.
 - Beam components are modularized as software parts.
 - The toolkit is extended by adding new modules maintaining basic functionalities.
 - Our strategy is successfully applied for three particle therapy systems.
 - The physics validation using this toolkit comes soon.

- We are collecting geometry information of irradiation system.
 - It is welcome to give us your irradiation system geometry.
Parameter modification

Three type of modification

- `fSystem->GetModule("moduleName")`
 - Translation/Rotation
 - More functionality require cast to the module

- `fSystem->ApplyCommand("type");`
 - Catalogued parameter is loaded and rebuild the module geometry.

- `fSystem->UpdateEvent();`
 - Event by event modification such as wobbler field should be described.