Status and plan for the hadron therapy simulation project in Japan

Takashi Sasaki

KEK and CREST, JST

Takashi.Sasaki@kek.jp

The Project

- "The Development of Software Framework for Simulation in Radiotherapy"
 - funded by the Core Research for Evolutional Science and Technology (CREST) program organized by Japan Science and Technology Agency (JST) from 2003 to 2008
- Joint project among Geant4 developers, astro-physicists and medical physicists in Japan

Member Institutes

- High Energy Accelerator Research Organization (KEK)
- **Ritsumeikan University (RITS)**
- **Kobe University**
- Naruto University of Education
- **Toyama National College of Maritime Technology**
- Japan Aerospace Exploration Agency (JAXA)
- National Institute of Radiological Science (NIRS)
- National Cancer Center, Kashiwa
- **Gunma University Faculty of Medicine**
- Hyogo Ion Beam Medical Center (HIBMC) Medical Kitasato University

reant

Motivation

- Geant4 is well designed and complete software to simulate interaction between particles and matter
- However, Geant4 is not easy to use in a few case, if
 - geometry is very complex, and
 - physics related is not trivial
 - most of physics process are covered already, but still setting for selection or combination is difficult sometime
 - in very few case, new physics process is need to be implemented
- Simulation in particle therapy, especially, in heavy ion therapy is one of such cases and very challenging for Geant4 developers' too
 - *N.B.* Heavy ion physics also applicable to astro-phys
- Validation of results are very important in any case
 - Geant4 is not a mighty magic box

Goal of Our Project

- Provide the framework and software toolkit for simulation in radiotherapy, especially, particle therapy
 - Well designed general purpose software framework
 - DICOM/DICOM-RT interface
 - Visualization/Interactivity
 - Web interface
 - GRID computing
 - etc
- Validation of results

Highlights

- Common software parts are provided as software toolkit
 - User can adopt for their own target with minimal modification or addition of a class derived from the base class provided
 - In many cases, the same or similar geometry are used
 - Requirements on physics processes looks similar
- Framework based on PYTHON for more functionality and usability
- visualization and computer aided user assistance tool will be provided as independent software

 Parallelization of simulation and GRID computing

– Not depends on TOP-C

- New DICOM-G4 interface
 - DICOM-RT is also taken into account
 - Standardization is not yet ready and need adoption for different extension at each facility, anyway
 - DICOM example in the Geant4 distribution has problems and should be fixed
 - Quick fixes are already in the new release
- Validation against experiments
 - proton beam first then carbon

Use case and requirement sampling

- All of 6 facilities for particle therapy in Japan and one in Italy have been WERC(Wakasa) interviewed
 - NIRS
 - NCC-EAST
 - HIBMC
 - WERC
 - SCC
 - University of Tsukuba
 - INFN LNS at Catania, Italy
- Information on components in beam line and also treatment room have been gathered also

Framework for geometry modeling

- Class library for implementing a geometry model of hadron therapy facilities are designed and built
- Beam lines at HIMBC, NCC-East and NIRS are implemented already (for water phantom experiments)
- Physics validation will be done for data taken at those facilities

HIBMC

New beam line at HIMAC

Ouada : 1152 Triangles : 2298

Physics validation

- In most cases, implementing a simulation using Geant4 is not difficult because much information are already available
- Users should consider about the validity of the results
 - Why you can believe the results?
 - If you publish any results using Geant4 without validation, you are silly enough
 - Geant4 is not a mighty magic box

Validation against proton data

- Comparison between data taken at HIBMC and it's simulation based on Geant4 has been performed using rapid prototyping
- Geant4 well reproduced the measurements

Bragg peak

IEEE Transaction on Nuclear Science, Volume 52, Issue 4, Aug.2005, pp.896-901

Comparison between measurement at HIBMC and Geant4 simulation

proton beam with 150, 190 and 230 MeV

Spread Out Bragg Peak (SOBP)

Validation against carbon data

- Data taken at new beam line at the therapy beam line and also new beam line at HIMAC
- P152 experiment at HIMAC
 - Full reconstruction of tracks in carbon interaction using ECC (Emulsion Cloud Chamber)
 - The first paper has been accepted by Nuclear Instruments and Method in Physics Research A and to be published soon

HIMAC new beam line

C12 290MeV/u

Comparison between data and MC

Very Preliminary results

Geant4:Binary cascade model

Intentionally removed

C12 290MeV/u

Comparison among different physics models in Geant4

DICOM and visualization

- Geant4-DICOM and DICOM-RT (still HIBMC only) interface
 - Read DICOM image and model the geometry for Geant4 and interface to therapy planning systems
 - DICOM-RT provides the information on apparatus on the beam line, but not well standardized yet
 - New DICOM interface was developed
 - Bug fixes for the existing example in G4 have been done
 Byte order problem and other glitches
- Visualizer for DICOM image + dose distribution + analysis results

Visualization Samples

Visualization Samples

Visualization Samples

• A head region data.

Computer aided geometry design

ファイル 新規 ブックマーク デスクトップ ウィンドウ ヘルプ

For a first example, electron accelerator head design tool has been designed and implemented, as like BEAM.

With GUI, design change can be manipulated easily and C++ source code to describe the geometry setup for Geant4 will be produced automatically.

Needs only a web browser and Java!

Parallelism and GRID deployment

- Event level parallelism has been implemented for general purpose using MPI-C++ interface
 - No other component, but just MPI implementation is necessary, such as MPICH
 - Independent from the TOP-C example in G4 distribution
- Parallel simulation over the Internet is realized by GRID middleware in our case Globus and also LCG2

– Our LCG2 system is not a part of CERN VO

• Web interface to access GRID from behind the hospital firewall is under development

Parallelization efficiency

Firewall

Web interface

🖌 http://localhost:8080/ - Konqueror 🎐		?_@×
場所(<u>L</u>) 編集(<u>E</u>) 表示(<u>V</u>) 進む(<u>G</u>) ブックマーク(<u>B</u>) ツール(<u>T</u>) 設定(<u>S</u>) ウィンドウ(<u>W</u>) ヘルプ(<u>H</u>)		
Q Q Q Q 🙆 🛇 🖨 🕵 🔍 🔒 🖶		\$
☑ 墙所(<u>o</u>): 📢 http://localhost:8080/	▼ <mark>G</mark>	L •

Geant4CherryPy is serving now

- · Show the Geometry of your application
 - Show Geometry in VRML
 - Show Geometry in DAWN
- Show Geant4 Environment Variables and Commands
- /run/beamOn
- Execute Python G4 command
- Show Root result on the fly

Histograms created by ROOT

Geant4 kernel improvements

- Tracking in parallel geometry
 - Scoring in a different geometry
 - Improvements on Read-Out geometries
 - Smaller step size for accuracy of physics, but scoring in combined steps for better performance
- Tallying/scoring
 - Relating with the above issue and the idea is borrowed from MCNP
 - Give physical quantities extracted from fundamental values such as energy deposit, timing or other variables in Geant4
 - Dose, temperature and so on
 - Treatment of flux based quantities also will be considered

Plan

- Releasing beta version of software parts and tools first, e.g. G4-DICOM viewer, then complete system
 - For contributors only
 - The details will be announced

Future collaboration

- We welcome very much the contact from any other facility who have an interest to use our software for their simulation
 - We will implement and provide simulation software if you provide us necessary information and data for validation in trade
 - All of required information to simulate experiments are not necessary on the papers
 - Needs direct collaboration with people who took data

Summary

- Our project is developing the software framework and toolkit for particle therapy
- Also validation against data are done very seriously
 - Protons
 - HIBMC, NCC-east and others
 - Carbons and heavier ions
 - HIMAC
 - Needs more data

Acknowledgements

 Some slides are prepared by members of the project, Tsukasa Aso, Go Iwai, Satoru Kameoka, Akinori Kimura, Koichi Murakami and Ken Yusa

