Hadronic Physics 1-b

Cours Geant4 @ Paris 2007 4 au 8 juin 2007, Ministère de la Recherche, Paris, France *Gunter Folger*

Overview

- Cascade models Binary Cascade
- Parameterized models
- Elastic processes

Acknowledgement:

Most slides are taken from course prepared by Dennis Wright, Geant4 course held at SLAC, May 2007

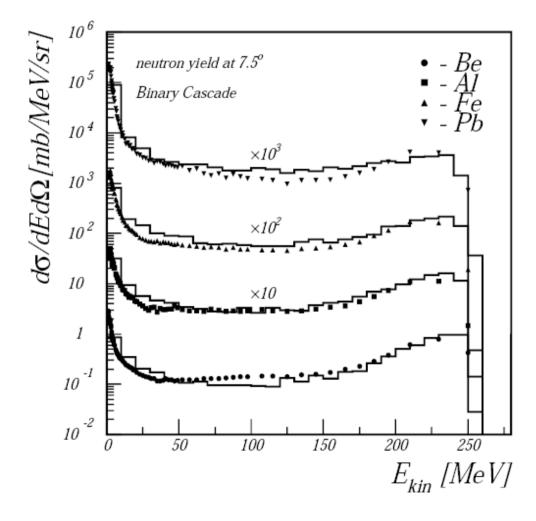
Binary Cascade

- Cascade type Model
 - Nucleus is explicitly modeled
 - Nucleons have momentum and are placed in space
 - momentum taken into account for scattering
 - hadron-nucleon collisions including re-scattering
 - resonances excitation and decay
 - Elastic scattering
 - Pauli blocking
 - particles follow curved trajectories in nuclear potential
 - At end of cascade, nucleus and exciton system is passed to pre-equilibrium model (precompound)

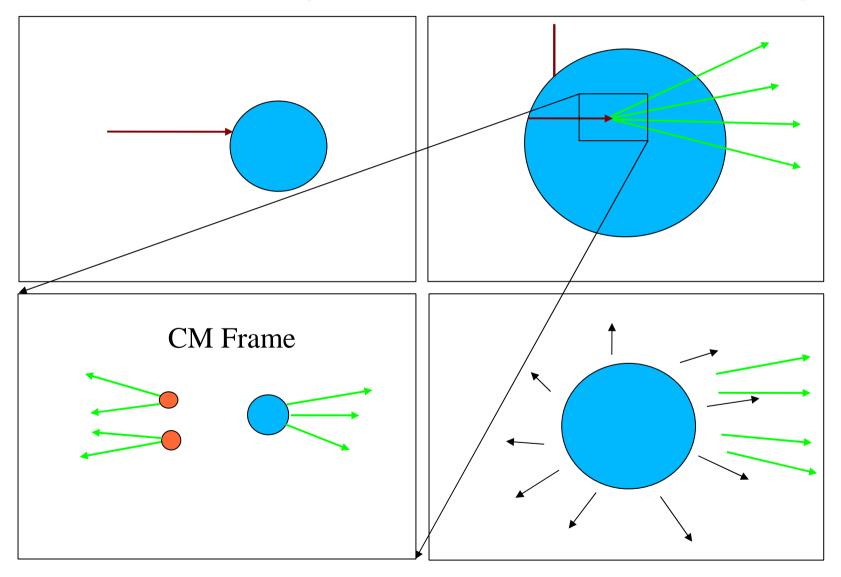
Binary Cascade (2)

- In Geant4 the Binary cascade model is currently used for incident p, n, (and π)
 - -valid for incident p, n from 0 to <10 GeV
 - -valid for incident π^+ , π^- from 0 to 1.3 GeV
- A variant of the model, G4BinaryLightIonReaction, is valid for incident light ions, more in Hadronics 3

Using the Binary Cascade


• Invocation sequence Binary cascade

G4BinaryCascade* binary = new G4BinaryCascade(); G4ProtonInelasticProcess* pproc = new G4ProtonInelasticProcess(); pproc -> RegisterMe(binary); G4ProcessManager * p_manager=G4Proton::Proton()->GetProcessManager() p_manager -> AddDiscreteProcess(pproc);


Invocation sequence BinaryLightIonReaction

G4BinaryLightIonReaction* ionBinary = new G4BinaryLightIonReaction; G4IonInelasticProcess* ionProc = new G4IonInelasticProcess; ionProc->RegisterMe(ionBinary); genericIonManager->AddDiscreteProcess(ionProc);

Validation of the Binary Cascade 256 MeV protons

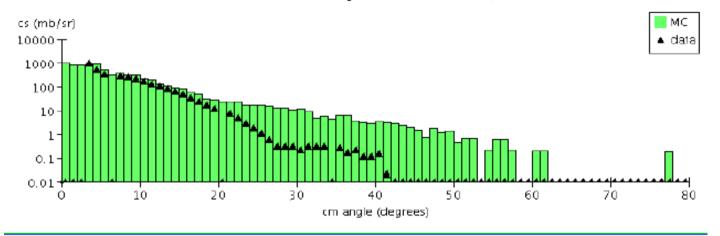
LEP, HEP (Comic Book Version)

LEP, HEP models (text version)

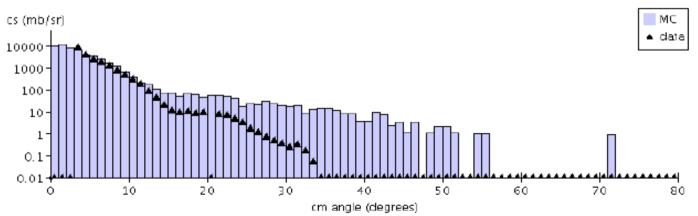
- Modeling sequence:
 - initial interaction of hadron with nucleon in nucleus
 - highly excited hadron is fragmented into more hadrons
 - particles from initial interaction divided into forward and backward clusters in CM
 - another cluster of backward going nucleons added to account for intra-nuclear cascade
 - clusters are decayed into pions and nucleons
 - remnant nucleus is de-excited by emission of p, n, d, t, alpha

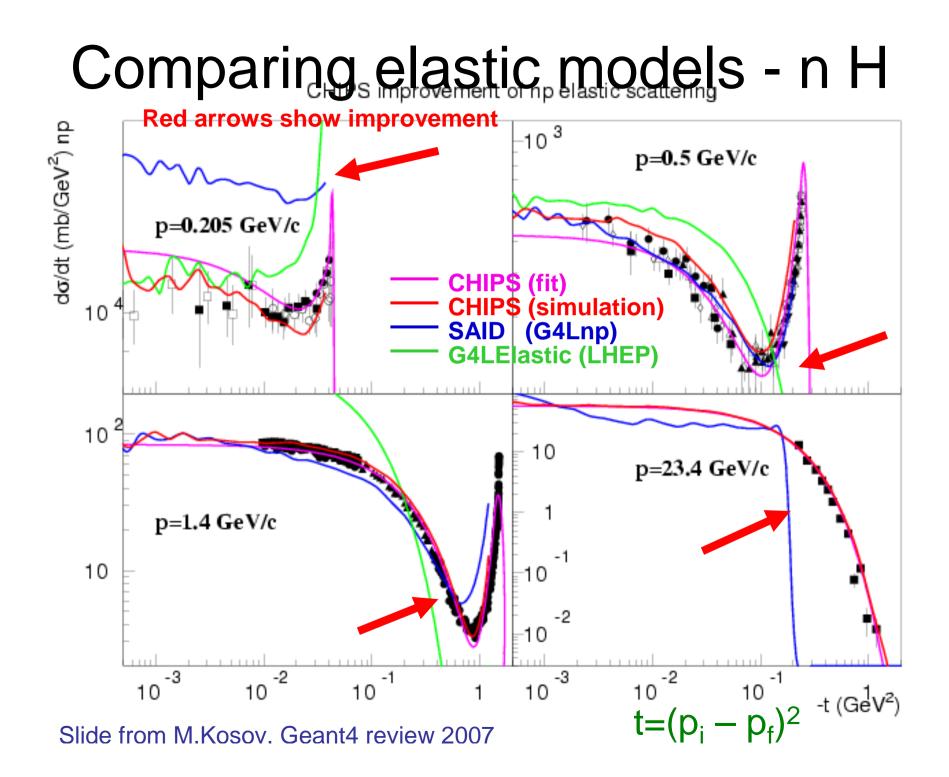
Using the LEP and HEP models

- The LEP and HEP models are valid for p, n, π , K, Λ , Σ , Ξ , Ω , α , t, d
 - LEP valid for incident energies of $0 \sim 30 \text{ GeV}$
 - HEP valid for incident energies of ~10 GeV 15 TeV
- Invocation sequence

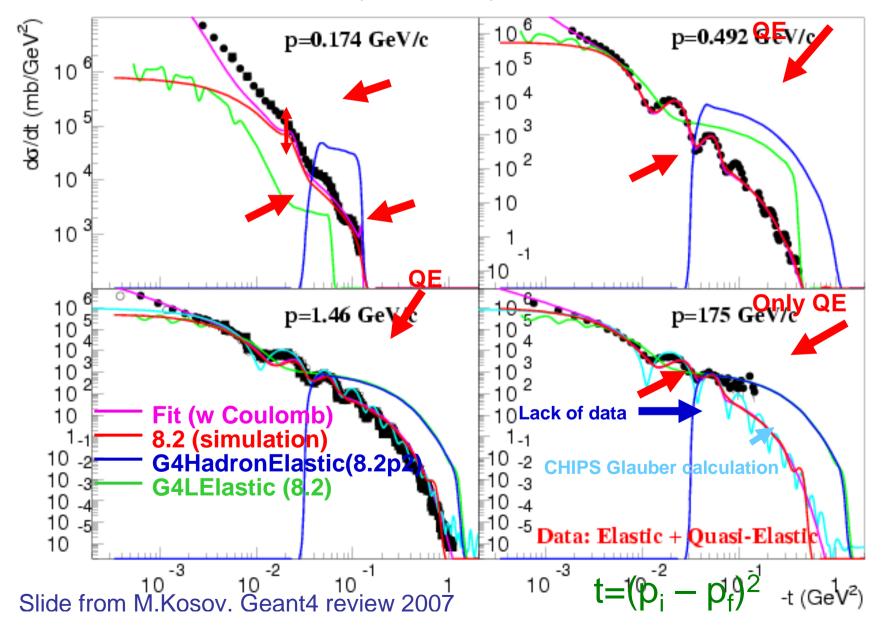

G4ProtonInelasticProcess* pproc = new G4ProtonInelasticProcess(); G4LEProtonInelastic* LEproton = new G4LEProtonInelastic(); pproc -> RegisterMe(LEproton); G4HEProtonInelastic* HEproton = new G4HEProtonInelastic(); HEproton -> SetMinEnergy(20*GeV); pproc -> RegisterMe(HEproton); proton_manager -> AddDiscreteProcess(pproc);

Hadron Elastic Scattering


- GHEISHA-style (G4LElastic)
 - classical scattering (not all relativistic)
 - simple parameterization of cross section, angular distribution
 - can be used for all long-lived hadron projectiles, all energies
- Coherent elastic
 - G4LEpp for (p,p), (n,n) : taken from detailed phase-shift analysis, good up to 1.2 GeV
 - G4LEnp for (n,p) : same as above
 - G4HadronElastic for (h,A) : nuclear model details included as well as interference effects, good for 1 GeV and above, all long-lived hadrons
 - G4QElastic for (p,A), (n,A) : parameterization of experimental data (M.Kossov), part of CHIPS modeling


Elastic Scattering Validation (G4LElastic)

Elastic K+ scattering from C at 800 MeV/c



Comparing elastic models - p Pb

CHIPS improvement of pPb elastic scattering

Summary (1)

- Geant4 hadronic physics allows user to choose how a physics process should be implemented:
 - cross sections
 - models
- Many processes, models and cross sections to choose from
 - hadronic framework makes it easier for users to add more

Summary (2)

- Parameterized models (LEP, HEP) handle the most particle types over the largest energy range
 - based on fits to data and some theory
 - not very detailed
 - fast
- Two main types of elastic scattering are available:
 - GHEISHA-style
 - Coherent (under development)
- Cascade models (Bertini, Binary) are valid for fewer particles over a smaller energy range
 - more theory-based
 - more detailed
 - Slower
- Precompound models are available for low energy nucleon projectiles and nuclear de-excitation