Hadronic Physics 3

Cours Geant4 @ Paris 2007 4 au 8 juin 2007, Ministère de la Recherche, Paris, France Gunter Folger

Geant4 V8.3

Outline

- String Models
 - quark-gluon string, Fritiof fragmentation
- Chiral Invariant Phase Space (CHIPS) model
- Other models
 - capture
 - fission
 - isotope production

Acknowledgement:

Slides are a close copy of slides prepared by Dennis Wright for Geant4 course held at SLAC, May 2007

String Models

For incident p, n, π, K
 ~10 GeV < E < 50 TeV

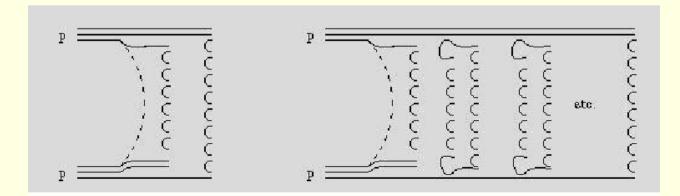
Model handles:

- selection of collision partners
- formation and excitation of strings
- string hadronization
- Damaged nucleus remains. Another Geant4 model must be added for nuclear fragmentation and deexcitation
 - pre-compound model, or CHIPS for nuclear fragmentation
- **QGS** also used for high energy γ nuclear interaction

String Model Algorithm

- Build up 3-dimensional model of nucleus
- Large γ -factor collapses nucleus to 2 dimensions
- Calculate impact parameter with all nucleons
- Calculate hadron-nucleon collision probabilities
 - use Gaussian density distributions for hadrons and nucleons
- String formation and fragmentation into hadrons

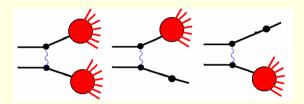
Longitudinal String Fragmentation


- String extends between constituents
- Break string by inserting q-qbar pair according to

■ u : d : s : qq = 1 : 1 : 0.27 : 0.1

- At break -> new string + hadron
- Created hadron gets longitudinal momentum from sampling fragmentation functions
- Gaussian P_t , $\langle P_t^2 \rangle = 0.5 \text{ GeV}$

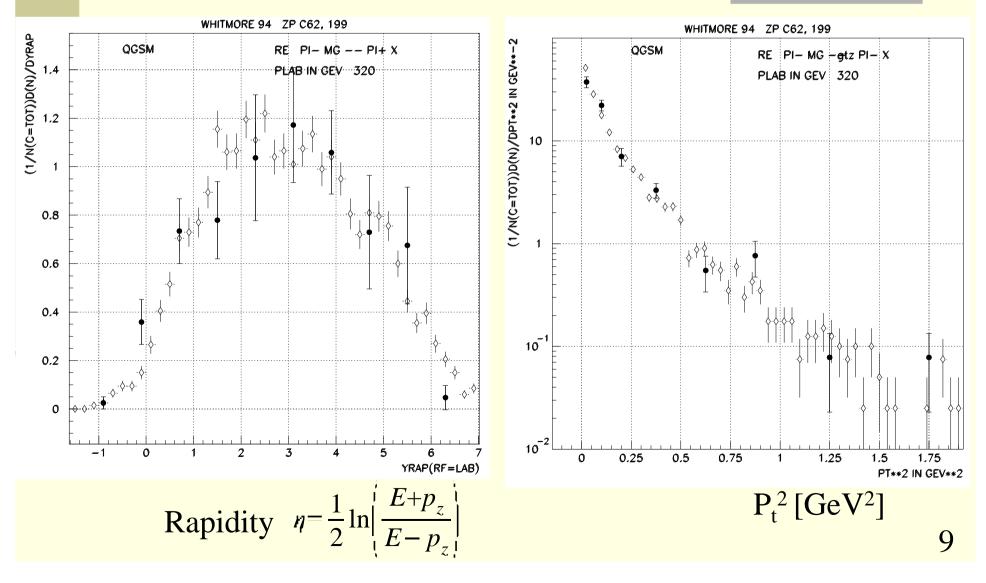
Quark Gluon String Model


- Two or more strings may be stretched between partons within hadrons
 - strings from cut cylindrical Pomerons
- Parton interaction leads to color coupling of valence quarks
 - sea quarks included too
- Partons connected by quark gluon strings, which hadronize

Fritiof Model

Similar to Quark-Gluon string model, except

 no partons are exchanged between projectile and target



- only momentum is exchanged:
 - $dW \propto dP_{proj}^{-} / P_{proj}^{-} \times dP_{tar}^{-} / P_{tar}^{-}$
- has a different set of string fragmentation functions

Diffraction

Both QGS and FTF models include diffraction
 projectile or target or both break up into hadrons
 amount of diffraction is adjusted empirically

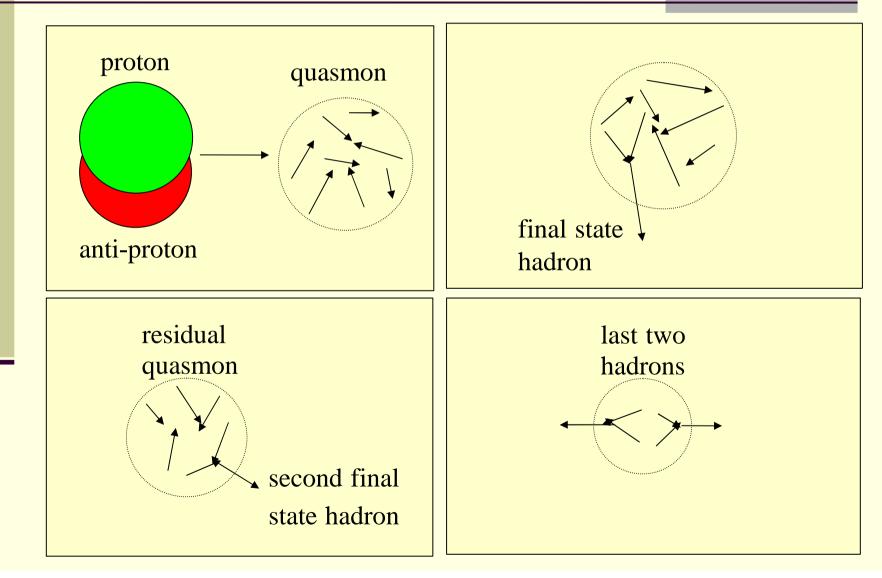
QGSM - Results pi- Mg \rightarrow pi+ X, Plab 320 GeV/c

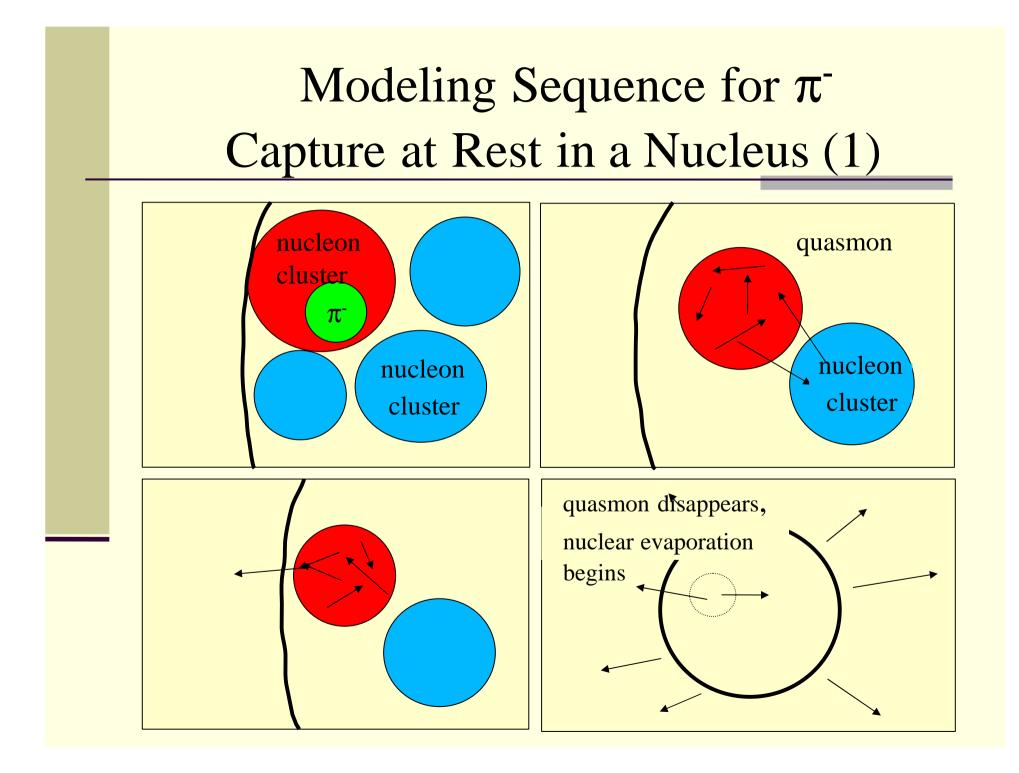
Chiral Invariant Phase Space (CHIPS)

- Origin: M.V. Kosov (CERN, ITEP)
- Use:
 - capture of negatively charged hadrons at rest
 - anti-baryon nuclear interactions
 - gamma- and lepto-nuclear reactions
 - back end (nuclear fragmentation part) of QGSC model

CHIPS Fundamental Concepts

- Quasmon: an ensemble of massless partons uniformly distributed in invariant phase space
 - a 3D bubble of quark-parton plasma
 - can be any excited hadron system or ground state hadron
- Critical temperature T_C: model parameter which relates the quasmon mass to the number of its partons:


•
$$M_Q^2 = 4n(n-1)T_C^2 => M_Q \sim 2nT_C$$

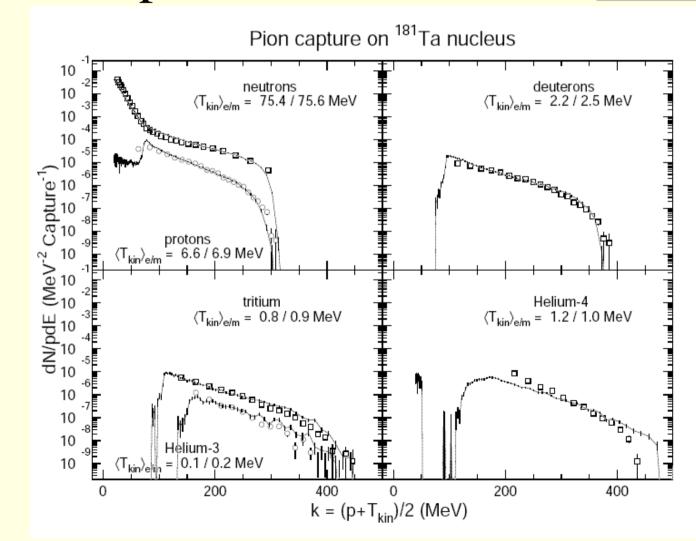

- T_c = 180 200 MeV
- Quark fusion hadronization: two quark-partons may combine to form an on-mass-shell hadron
- Quark exchange hadronization: quarks from quasmon and neighbouring nucleon may trade places

CHIPS Applications

- u,d,s quarks treated symmetrically (all massless)
 - model can produce kaons, but s suppression parameter is needed, η suppression parameter also required
 - real s-quark mass is taken into account by using masses of strange hadrons
- CHIPS is a universal method for fragmentation of excited nuclei (containing quasmons).
- Unique, initial interactions were developed for:
 - interactions at rest such as π^- capture, pbar annihilation
 - gamma- and lepto-nuclear reactions
 - hadron-nuclear interaction in-flight are in progress
- Anti-proton annihilation on p and π⁻ capture at rest in a nucleus illustrate two CHIPS modelling sequences

Modeling Sequence for Proton – antiproton Annihilation (1)

Modeling Sequence for π^- Capture at Rest in a Nucleus (2)


- pion captures on a subset or cluster of nucleons
 - resulting quasmon has a large mass, many partons
 - capture probability is proportional to number of clusters in nucleus
 - 3 clusterization parameters determine number of clusters
- both quark exchange and quark fusion occurs
 - only quarks and diquarks can fuse
 - mesons cannot be produced, so quark-anti-quark cannot fuse as in p-pbar case
 - because q-qbar fusion is suppressed, quarks in quasmon exchange with neighboring nucleon or cluster
 - produces correlation of final state hadrons

Modeling Sequence for π^- Capture at Rest in a Nucleus (3)

- some final state hadrons escape nucleus, others are stopped by Coulomb barrier or by over-barrier reflection
- hadronization continues until quasmon mass reaches lower limit m_{min}
 - in nuclear matter, at this point nuclear evaporation begins
 - if residual nucleus is far from stability, a fast emission of p, n, α is made to avoid short-lived isotopes

Validation of CHIPS Model for Pion

Capture at Rest on Tantalum

Capture Processes

At rest capture on nuclei

- G4MuonMinusCaptureAtRest
- G4PionMinusAbsorptionAtRest
- G4KaonMinusAbsorption
- G4AntiProtonAnnihilationAtRest
- G4AntiNeutronAnnihilationAtRest

In flight

- G4HadronCaptureProcess uses following models:
 - G4LCapture (mainly for neutrons)
 - G4NeutronHPCapture (specifically for neutrons)

Fission Processes

- G4HadronFissionProcess can use three models:
 - G4LFission (mostly for neutrons)
 - G4NeutronHPFission (specifically for neutrons)
 - G4ParaFissionModel
- New spontaneous fission model from LLNL
 - available soon

Isotope Production

- Useful for activation studies
- Covers primary neutron energies from 100 MeV down to thermal
- Can be run parasitically with other models
- G4NeutronIsotopeProduction is currently available
 - G4ProtonIsotopeProduction not yet completed
- To use:
 - G4NeutronInelasticProcess nprocess;
 G4NeutronIsotopeProduction nmodel;
 nprocess.RegisterIsotopeProductionModel(&nmodel);
- Remember to set environment variable to point to G4NDL (Geant4 neutron data library)

Summary

- Two string models (QGS, FTF) are provided for high energy (>20 GeV) interactions
- The Chiral Invariant Phase Space model is available for:
 - capture at rest
 - anti-baryon annihilation
 - gamma and lepto-nuclear interactions
 - nuclear de-excitation
- Other models/processes available include:
 - capture at rest and in flight
 - fission
 - neutron-induced isotope production