The PLANETOCOSMICS Geant4 application

L. Desorgher Physikalisches Institut, University of Bern

Outline

Description of the code Simulation results for the Earth + validation Simulation results for Mars Simulation results for Mercury First results for Jupiter and Europa Motivation to model the interactions of energetic particles with planets

- Atmosphere ionisation
- Sputtering of atmosphere and surface
- Production of cosmogenic nuclides
- Measurements of the soil composition

Quantify the radiation environment of planets
Albedo, CRAND process
Dose for aircrew and space mission
Dose vs depth in soil

GEANT4 Monte Carlo Toolkit

C++ library for computing by Monte Carlo simulation the electromagnetic and hadronic interactions of energetic particles (250 eV -10 TeV) with matter.

Effect of the magnetic and electric fields can be taken into account

Developed by a world-wide collaboration of physicists

PLANETOCOSMICS GEANT4 Application Interaction of energetic particles with Planet Atmospheres and

PLANETOCOSMICS Geant4 Application Propagation of charged particles in the Planet Magnetosphere

PLANETOCOSMICS

• Interaction of energetic particles with Earth, Mars, Mercury

- Fluxes of secondary particles at user defined altitudes atmospheric depths, and soil depths
- Energy deposited vs atmospheric depth and vs soil depth
- Propagation in magnetic field
- Different coordinate system relative to planets
- Visualisation of particle trajectories and field lines

Flux of ionising particles over Moscow in 2000

Atmosphere ionisation induced by GCR

Neutron flux at 56 g cm⁻² $R_c = 0.8 \text{ GV}$ in June 1997

Atmospheric ionisation at 300 g cm⁻² at 06:57 on January 20th , 2005

Contribution of different particle types to Ambient equivalent dose on Mars

10 MeV e⁻ in the most magnetized region of Mars

Magnetic shielding on Mars at -47.8 N and 174 E

Tracking of 10⁷ downward mono-energetic particles starting at 300 km altitude

Detection of number of particles that hits the ground in function of position 10 MeV protons 10 MeV e⁻

Mercury Soil + Dipole B0= 300 nT

e- >1 MeV e+ > 1 MeV proton > 10 MeV

10 GeV protons from dayside

Quasi trapped e⁻ in Mercury dipole

Albedo Neutral radiation

10 GeV protons

neutrons gammas

Effective Vertical Cut-off Rigidity at Jupiter

Radiations at Europa (~9.4 R_i)

Dose in Europa soil (ice)

More informations on

cosray.unibe.ch/~laurent/planetocosmics

Guriner et al. 2005