.~ ' Geant4d v8.3
“ S tanford

Linear H
Accelerator 72 -

B

DT W
Center..

-

Kerneldl

Maketo AsaiiSLAC)
Geant4d. Tutorial Course

Contents

» User limits
» Attaching user information to G4 classes
» Stacking mechanism

Kernel Il - M.Asai (SLAC) 2

User limits

G4UserLimits

» User limits are artificial limits affecting to the tracking.
G4UserLimits(G4double ustepMax = DBL_MAX,

G4double utrakMax = DBL_MAX,
G4double utimeMax = DBL_MAX,
G4double uekinMin = 0.,
G4double urangMin =0.);

iMaxStep; // max allowed Step size in this volume

fMaxTrack; // max total track length

fMaxTime; [/ max global time

fMIinEkine; // min kinetic energy remaining (only for charged particles)

fMinRange; // min remaining range (only for charged particles)
Blue : affecting to step

Yellow : affecting to track

» You can set user limits to logical volume and/or to a region.
User limits assigned to logical volume do not propagate to daughter volumes.

User limits assigned to region propagate to daughter volumes unless
daughters belong to another region.

If both logical volume and associated region have user limits, those of

logical volume win. Kernel Il - M.Asai (SLAC) 4

Processes co-working with G4UserLimits

» In addition to instantiating G4UserLimits and setting it to logical volume or
region, you have to assign the following process(es) to particle types you want
to affect.

Limit to step
fMaxStep : max allowed Step size in this volume
» GA4StepLimiter process must be defined to affected particle types.
» This process limits a step, but it does not kill a track.
Limits to track
fMaxTrack : max total track length
fMaxTime : max global time
fMinEkine : min kinetic energy (only for charged particles)

fMinRange : min remaining range (only for charged particles)

» G4UserSpecialCuts process must be defined to affected particle types.

» This process limits a step and kills the track when the track comes to one of
these limits. Step limitation occurs only for the final step.

Kernel Il - M.Asai (SLAC) 5

Attaching user information to
some kernel classes

Attaching user information

» Abstract classes
» You can use your own class derived from provided base class
» G4Run, GA4VHIit, G4VDigit, G4V Trajectory, G4VirajectoryPoint
» Concrete classes
» You can attach a user information class object
G4Event - G4VUserEventInformation
G4Track - G4VUserTrackInformation
G4PrimaryVertex - G4VUserPrimaryVertexInformation
» G4PrimaryParticle - G4VUserPrimaryParticleInformation
» G4Region - G4VUserRegionInformation

» User information class object is deleted when associated Geant4 class object
is deleted.

Kernel Il - M.Asai (SLAC) 7

Trajectory and trajectory point

Trajectory and trajectory point class objects persist until the end of an event.

G4V Trajectory Is the abstract base class to represent a trajectory, and
G4V TrajectoryPoint is the abstract base class to represent a point which makes
up the trajectory.

» In general, trajectory class is expected to have a vector of trajectory points.

Geant4 provides G4Trajectoy and G4TrajectoryPoint concrete classes as defaults.

These classes keep only the most common quantities.

» If the you want to keep some additional information, you are encouraged to
implement your own concrete classes deriving from G4V Trajectory and
G4V TrajectoryPoint base classes.

» Do not use G4Trajectory nor G4TrajectoryPoint concrete class as base
classes unless you are sure not to add any additional data member.

Kernel Il - M.Asai (SLAC)

8

Use of G4Allocator

Instantiation / deletion of an object is a heavy operation.

» It may cause a performance concern, in particular for objects that are
frequently instantiated / deleted.

» E.g. hit, trajectory and trajectory point classes
G4Allocator is provided to ease such a problem.
» It allocates a chunk of memory space for objects of a certain class.
Please note that G4Allocator works only for a concrete class.

» It works only for “final” class.

» It does NOT work for a base class, in case you add a data member to your
concrete class.

Do NOT use G4Trajectory, G4TrajectoryPoint nor any example concrete hit
classes as your base class.

» These classes actually use G4Allocator.
» It causes a memory leak

» if you derive your class from such classes AND add a data member.
» We are discussing about a protection against such incorrect use.

Kernel Il - M.Asai (SLAC)

)

Creation of trajectories

Naive creation of trajectories occasionally causes a memory consumption
concern, especially for high energy EM showers.

In UserTrackingAction, you can switch on/off the creation of a trajectory for the
particular track.

void MyTrackingAction
.:PreUserTrackingAction(const G4Track* aTrack)

{
if(...)
{ fpTrackingManager-> SetStoreTrajectory (true);}
else
{ fpTrackingManager-> SetStoreTrajectory (false);}

» If you want to use user-defined trajectory, object should be instantiated in this
method and set to G4TrackingManager by SetTrajectory() method.

fpTrackingManager->SetTrajectory(new MyTrajectory(...)

Kernel Il - M.Asai (SLAC) 10

Bookkeeping| iIssues

Connection from G4PrimaryParticle to G4Track
G4int G4PrimaryParticle::GetTrackID()

» Returns the track ID if this primary particle had been converted into G4 Track,
otherwise -1.

» Both for primaries and pre-assigned decay products
Connection from G4Track to G4PrimaryParticle
G4PrimaryParticle®™ G4DynamicParticle::GetPrimaryParticle()

» Returns the pointer of G4PrimaryParticle object if this track was defined as a
primary or a pre-assigned decay product, otherwise null.

G4V UserPrimaryVertexInformation, G4VUserPrimaryParticleInformation and

G4V UserTrackInformation can be utilized for storing additional information.

» Information in UserTrackInformation should be then copied to user-defined
trajectory class, so that such information is kept until the end of the event.

Kernel Il - M.Asai (SLAC)

11

Examples/extended/
runAndEvent/REO1

An example for connecting

G4PrimaryParticle, G4Track, hits

and trajectories, by utilizing REO1TrackInformation
G4VUserTrackInformation and

G4V UserRegionInformation.

SourceTrackID means the
ID of a track which gets

into calorimeter.
PrimaryTrackID is copied
to UserTrackInformation

of daughter tracks.

SourceTrackID is updated for
secondaries born in tracker,
while just copied in calorimeter.

Examples/extended/runAndEvent/REO1

g = ey b o)t e =] e e e e e e e e e e e B eSS e e e eSS e e

BPrimary wvertex (0,0,0) at £t = 0 [n=]
==PDGcode 25 is not defined in @4 (19.53824,24.846369,-6.0465937) [GeV] »»> @dTrack ID 1
==FDGcode 23 is not defined in &4 (1.1302123,-23.156443,114.16953) [GeV] >»=> G4Track ID 6780
==FD@code 13 (mu-) (-22.464989,-38.451706,20.864853) [GeV] »»» G4Track ID 6782
==FDGeode —13 (mut) (23.595201, 150.20526, 93.304688) [Gev] =-> GAaTrack ID 6781

P 1 e 1 =il LA A S P = B =N =T = =i B E I e B = A | 450 [T | ol L e W]

TrackID =678Z2 : ParentID=6780 : TrackStatus=1 TraJectory Of track6782
Particle name : mu- PDG code : 13 Charge @ -1
Original momentum : —-22.444989%9 -38.451706 Z0.8464853 SeV

Vertex : 4.114¢61
Current trajec

TrackhID &78Z Position {-124.11431,-215.85917.117.12988" : 1878.8831 lkevl

Point[0] Positio TracklD 2;32 Position E:Ezgigiﬁ’ Tracker hits of track6782

Point[l] Po=sitio

TrackID Position

, LE10V npackID 6782 Position (-176.56317,-302.20101,163.964689) . 1776.6378 [keV]
Point[Z] Positio) . .. p1p 6782 Position (-201.7911,-345.36988,187.38871) : 2413.8986 [keV]
Point[3] Positio) o . pTp 6782 Position (-227.01961,-388.53841,210.61469) : 550.67792 [keV]
Point[4] Positlo} o vTD 6782 Position (-227.70865,-389.71739,211.45445) . 638.57593 [keV]
Point[3] Posi®io) 5 . okTp 6782 Position (-228.6702.-391.36253.212.34721% . 778.03992 [kev]

Folr
Foln
Foir
Folr
Folir
Eoir
Folr
Folr
Folr
Foln
Foir
Folr
Folir
Eoir
Folr
Folr
Folr

Source track TD 6782 (mu-,49.162515[GeV]) at (-252.24762,-431.70723,234.23764)
Original primary track ID 1 {unknown,335.56305[GeV]) . .

Cell[1l,31] .028283647 [GeV] Calorimeter hits of track6782
Cell[lZ,31] 39822296 [EeV]

Cell[13,31] 050185748 [zeV]

Cell[l14,31] L045883344 [EeW]
SR G oo Energy deposition includes not only
Cell[l6,31] .08386168 [EeV]

cell[ls, 32]
cell[17,32]
cell[17,31]
Ccell([15,32]

.0036526015 [GeV] muon itself but also all secondary
e e EM showers started inside the

0043483898 [GeV]
010138473 [GeV] 1

Cell[14,32] LO00183868352 [EeV] Calorlmeter.
Cell[13,32] L00188387598 [EeV]
Cell[lz,32] 0.00038848055 [EeV]
Total energy deposition in calorimeter by a source track in 13 =zells : 0.259582487 (GeV)

oo oo a0 oOo0ooooo

Fol

L= == | T oL =L oIT L) T T T [R e e e . e e e e g e i 15

Dratr+T?41 Dacda+qmnm= (=737 70777 —4nn 17044 217 1n04non

REO1RegionInformation

» REO1 example has three regions, i.e. default world region, tracker region and
calorimeter region.

» Each region has its unique object of REO1RegionInformation class.

class REO1Regioninformation : public G4VUserRegionl| nformation

{

public:
G4bool [sWorld () const;
G4bool IsTracker () const;
G4bool IsCalorimeter () const;

Through step->preStepPoint->physicalVolume->logicalVolume->region->
rbe jonInformation, you can easily identify in which region the current step
elongs.

» Don't use volume name to identify.

Kernel Il - M.Asai (SLAC)

Use of REO1RegionInformation

void REO1SteppingAction::UserSteppingAction(const G4Step * theStep)
{ // Suspend a track if it is entering into the calorimeter

// get region information

G4StepPoint* thePrePoint = theStep->GetPreStepPoint();

G4LogicalVolume* thePreLV = thePrePoint->GetPhysicalVolume()->GetLogicalVolume();
REO1RegionInformation* thePreRInfo

= (REO1RegionInformation*)(thePreLV->GetRegion()->GetUserInformation());

G4StepPoint* thePostPoint = theStep->GetPostStepPoint();
G4LogicalVolume* thePostLV = thePostPoint->GetPhysicalVolume()->GetLogicalVolume();
REO1RegionInformation* thePostRInfo

= (REO1RegionInformation*)(thePostLV->GetRegion()->GetUserInformation());

// check if it is entering to the calorimeter volume
if(1(thePreRInfo->IsCalorimeter()) && (thePostRInfo->IsCalorimeter()))
{ theTrack->SetTrackStatus(fSuspend); }

}

Kernel Il - M.Asai (SLAC)

Stack management

Track stacks in Geant4

By default, Geant4 has three track stacks.
» "Urgent”, "Waiting™ and "Postpone ToNextEvent™
» Each stack is a simple "last-in-first-out™ stack.
» User can arbitrary increase the number of stacks.

ClassifyNewTrack() method of UserStackingAction decides which stack each
newly storing track to be stacked (or to be killed).

» By default, all tracks go to Urgent stack.

A Track is popped up only from Urgent stack.

Once Urgent stack becomes empty, all tracks in Waiting stack are transferred to
Urgent stack.

» And NewStage() method of UsetStackingAction is invoked.

Utilizing more than one stacks, user can control the priorities of processing
tracks without paying the overhead of "scanning the highest priority track™.

» Proper selection/abortion of tracks/events with well designed stack

management provides significant efficiency increase of the entire simulation.

Kernel Il - M.Asai (SLAC)

17

Stacking mechanism

primary
tracks

A

End Of
Event

A 4

Event Manager
Urgent

P ' .
e e

Transfer

Waiting ‘ secondary
Stack and suspended
tracks

Transfer

Postpone To [Tracking
Manager
Next Event |/ =

Stack

Kernel Il - M.Asai (SLAC) 18

G4UserStackingAction

User has to implement three methods.
G4ClassificationOfiNewTrack ClassifyNewTrack(const G4 Track*)
» Invoked every time a new track is pushed to G4StackManager.
» Classification
fUrgent - pushed into Urgent stack
fWaiting - pushed into Waiting stack
fPostpone - pushed into PostponeToNextEvent stack
» fKill - killed
void NewStage()

» Invoked when Urgent stack becomes empty and all tracks in Waiting stack
are transferred to Urgent stack.

All tracks which have been transferred from Waiting stack to Urgent stack
can be reclassified by invoking stackManager->ReClassify()

void PrepareNewEvent()
» Invoked at the beginning of each event for resetting the classification
scheme.

Kernel Il - M.Asai (SLAC) 19

Tips of stacking manipulations

Classify all secondaries as fWaiting until Reclassify() method is invoked.

» You can simulate all' primaries before any secondaries.

Classify secondary tracks below a certain energy as fWaiting until' Reclassify()
method is invoked.

» You can roughly simulate the event before being bothered by low energy
EM showers.

Suspend a track on its fly. Then this track and all of already generated
secondaries are pushed to the stack.

» Given a stack is "last-in-first-out”, secondaries are popped out prior to the
original suspended track.

» Quite effective for Cherenkov lights

Suspend all tracks that are leaving from a region, and classify these suspended
tracks as fWaiting until Reclassify() method is invoked.

» You can simulate all tracks in this region prior to other regions.
» Note that some back splash tracks may come back into this region later.

Kernel Il - M.Asai (SLAC) 20

Set the track status

» In UserSteppingAction, user can change the status of a track.

void MySteppingAction::UserSteppingAction
(const G4Step * theStep)

G4Track* theTrack = theStep ->Getlrack ();
If(..) theTrack ->SetlrackStatus (fSuspend);

» If a track is killed in UserSteppingAction, physics quantities of the track (energy,
charge, etc.) are not conserved but completely lost.

Kernel Il - M.Asai (SLAC) 21

ExNO4StackingAction

ExampleNO04 has simplified collider
detector geometry and event samples of
Higgs decays into four muons.

Stage 0
» Only primary muons are pushed into

Urgent stack and all other primaries
and secondaries are pushed into

end of stage 0), number of hits in
muon counters are examined.

Proceed to next stage only if sufficient
number of muons passed through
muon counters. Otherwise the event is
aborted.

Waiting stack. /\

All of four muons are tracked without

being bothered by EM showers caused /1/_\

by delta-rays. (7)

Once Urgent stack becomes empty. (i.e. B
J

Kernel Il - M.Asai (SLAC) 22

ExNO4StackingAction

» Stage 1

» Only primary charged particles are
pushed into Urgent stack and all other
primaries and secondaries are pushed
into Waiting stack.

All' of primary charged particles are

the tracking region without being
bothered by the showers in
calorimeter.

tracked until they reach to the surface /\
of calori ;
| rimeter. Tracks reached to the /4—\
calorimeter surface are suspended and / \
pushed back to Waiting stack. K £)
All charged primaries are tracked in |
—
J

At the end of stage 1, isolation of
muon tracks is examined.

Kernel Il - M.Asai (SLAC) 23

ExNO4StackingAction

» Stage 2

» Only tracks in "region of interest” are
pushed into Urgent stack and all other
tracks are killed.

» Showers are calculated only inside of f
“region of interest”. '

Kernel Il - M.Asai (SLAC) 24

