

Physics List

Paul Guèye Hampton University, Hampton VA - USA

ü Brief History ü Importance of Geant4 Physics & Cuts ü Ex: Hadronic Physics ü What to do ...

JUne 4-8, 2007 G4Paris

Brief History

Geant4 related publications

- v First release: 1998
- v Impact in science

Release	Simple Google Search (all publications)
1999	63,200
2007 (1 st half)	205,000

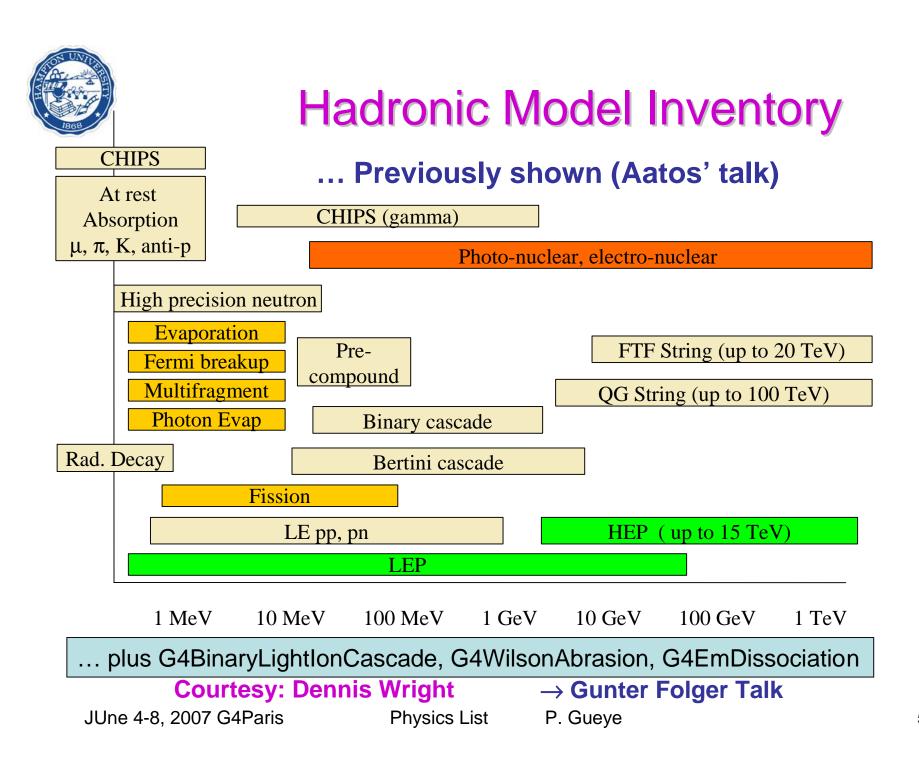
 \rightarrow About one order of magnitude by end of 2007!!

Importance of Physics and Cuts

- Which physics list?
- Which model?
- Which cuts?

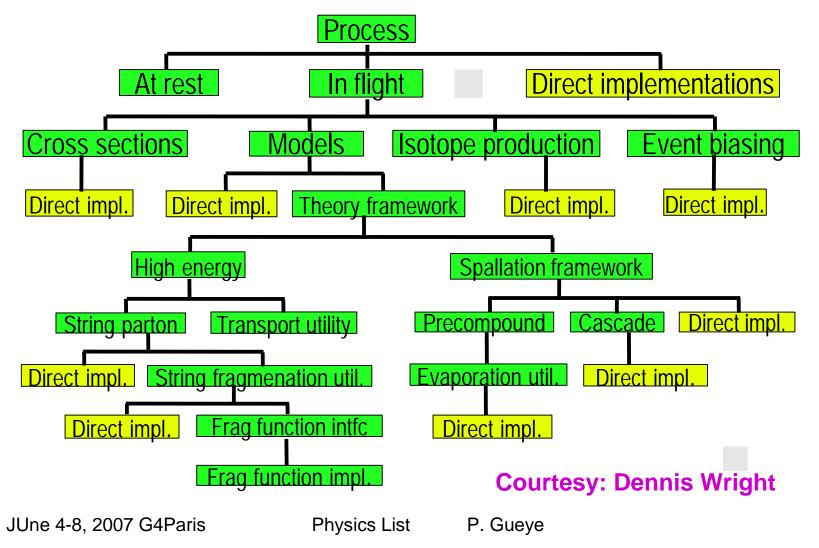
Example in nuclear/high energy physics

- >>10 analysis (students, postdocs, faculty ...)
- Need to use exactly the same tools
 - Particle IDBeam energyEfficiencies...Detector cutsBeam angleDead time...
- Importance of the analysis tool


(i.e., ntuples - see Analysis talk @ 14:00)

3

Previously mentioned (Gunter's talk) \rightarrow "Educated Guess" – not updated (in work ...)


- 1. High energy physics calorimetry
- 2. High energy physics trackers
- 3. 'Average' HEP collider detector
- 4. Low energy dosimetric applications with neutrons
- 5. Low energy nucleon penetration shielding
- 6. Linear collider neutron fluxes
- 7. High energy penetration shielding
- 8. Medical and military neutron applications
- 9. Low energy dosimetric applications
- 10. High energy production targets (ex. 400 GeV p on C or Be)
- 11. Medium energy production targets (ex. 15-50GeV p on light targets)
- 12. LHC neutron fluxes
- 13. Air shower applications
- 14. Low background experiments

Hadronic Model Organization

... Previously shown (Aatos' talk)

... and Primary Generator ...

Case for energy distribution of radioactive materials

- Ø "Standard": sampling from favorite function (i.e., Fermi, Poisson ...)
- Ø General Particle Source: handles radioactive decay

 \rightarrow Over or under-estimation of data?

What to Do ...

Consequences when different tools are used

- Comparison between published results is difficult Sometimes impossible!
- Accuracy and robustness of results
- Geant4 collaboration effort
 - Coherent approach lost
 - User support is difficult

Resources

- Geant4 website
- G4NAMU
 <u>http://geant4.slac.stanford.edu/g4namu/</u>
- Working groups
 <u>http://geant4.cern.ch/collaboration/working_groups.shtml</u>