Hands On #1

Overview

Part 1 : Starting and familiarizing

- Where is your installation ?
- Getting the example programs
- Running novice examples : N01, N03, N02 ...

Part 2 : Looking into Geant4, trying it out with exercises

- Examine cross sections
- Simulate depth dose curve
- Compute and plot Bragg curve

ee Wednesday's hands on Addenda : other examples, histogramming

Your Geant4 installation

- VMware Player users under Windows or Mac OS
 - all files downloaded from http://geant4.in2p3.fr/cenbg/vmware.html
 - in principle, no installation needed
 - all your peripherals should be operational (WiFi, disks,...)
- Installation from beginning
 - CERN link

http://geant4.web.cern.ch/geant4/support/download.shtml

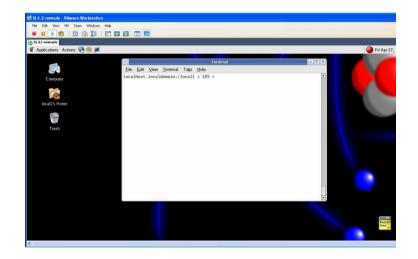
SLAC link

http://geant4.slac.stanford.edu/installation/

User forum

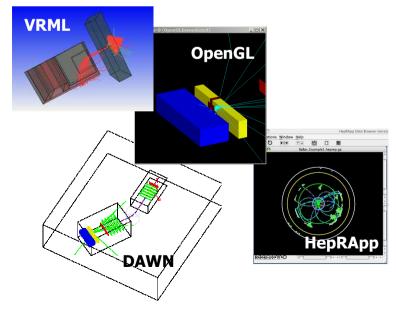
http://geant4-hn.slac.stanford.edu:5090/HyperNews/public/get/installconfig.html

Installation guide


http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/html/index.html

This Hands On will help you check your installation of Geant4 is correct

If not, we can try to help during this Hands On...


Access your Geant4 installation for VMware users

- Start the VMware player software
- Start your VMware machine
- Log onto the VMware machine
- Username: local1, password: local1
- Open a terminal (right click on desktop with mouse)
- You are now working under **Scientific** Linux 4.2 with gcc 3.4.4
- By default on your Windows PC, the directory /mnt/hgfs/echanges is a link to C:

Tips for VMware users (1/2)

- Geant4 8.3 installation path :
 - /usr/local/geant4
 - you need root privileges for modification (logon as root, password is scilinux4.2)
 - environment defined in /usr/local/env/Cshrc
- Visualization
 - OpenGL driver installed
 - HepRApp viewer : HepRApp
 - DAWN viewer : dawn
 - VRML viewer : vrmlview

Tips for VMware users (2/2)

- Data analysis
 - ROOT (5.12) : root
 - PAW / PAW++ : paw Or paw++
 - OpenScientist package for histograms
- Code management with Source Navigator
 snavigator
- Data Display Debugger : ddd

 Other : CERNLIB 2003, Gimp, Lyx, xemacs, OpenOffice : soffice

Troubles with VMware ?

- If you have troubles when uncompressing your zip files :
 - Windows users may download the 7-Zip utility for Windows. You may also try the PowerArchiver software.
 - Macintosh users may download the p7zip utility, doing as follows in terminal mode (thanks to Pierre François Honoré, CEA):

Under Windows, you may also encounter problems if the disks where you uncompress your files have been formatted in the FAT32 format. Use **NTFS** formatted disks only.

- During the first installation, you may be asked to create a new unique identifier UUID (a dedicated window will pop up). Simply choose Create.
- During the first startup, a hardware configuration page (DOS like) may appear regarding your network card adapter. Do the following :
 - Select with the Enter key the **Remove Configuration** button
 - Select the **Configure** button with the Enter key
 - Choose use dynamic IP configuration with the space bar
 - Go to the **OK** button with the arrow keys and Select **OK** with the Enter key
- If your OpenGL visualization windows do not refresh properly when running your Geant4 application, connect as super user, edit the /etc/X11/xorg.conf file and add the line: Option "backingstore" in Section Screen
- With the last version of VMware player (download above), you may define an exchange directory between Windows and Linux ; assuming you want to setup C:\ as the exchange directory, do as follows :
 - Make sure your Linux machine is shut down and your VMware Player application is closed
 - Open the downloaded *.vmx file with WordPad
 - Check the path of the exchange directory ("C:\") and its linux name ("share") and modify it as you want (in the shared folder section)
 - Save this file as a text file
 - Open the VMware player application
 - Go to the VMware Player menu, select Shared Folders..., you should see the name of your directory appear, select Always enabled then OK
 - Start your Linux machine
 - Under your linux session, your exchange directory is located at /mnt/hgfs/share

http://geant4.in2p3.fr/cenbg/vmware.htm

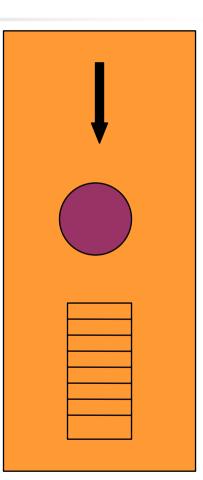
Copy selected Geant4 examples

 The Geant4 system (source and libraries) is already installed on your computer Find it at \$G4INSTALL which locates the head of your copy of Geant4 (echo \$G4INSTALL will return /usr/local/geant4/v8.3/geant4.8.3)

You must logon with root priviledges if you want to modify this installation...

 Set up a work directory on your local1 account mkdir mytestdir

cd mytestdir


- Copy there several novie examples
 - cp -r \$G4INSTALL/examples/novice/N01 .
 - cp -r \$G4INSTALL/examples/novice/N02 .
 - cp -r \$G4INSTALL/examples/novice/N03 .
- Check that the following environment variables are set properly \$G4WORKDIR should define the work directory (by default, /home/local1/geant4/work)
 \$G4SYSTEM should define the system name (for Linux it is Linux-g++)
- One of the visualization drivers that you built into the toolkit must be chosen.

In this tests we will choose the OPENGL visualization driver

\$G4VIS_USE_OPENGLX should be set to **1**

Novice example N01

- Fixed geometry: Ar gas mother volume with Al cylinder and Pb block with Al slices
- Incident particle is a geantino no physics interactions
- No magnetic field and only the transportation process is enabled
- Hard coded batch job and verbosity

Compile and run first novice Example N01

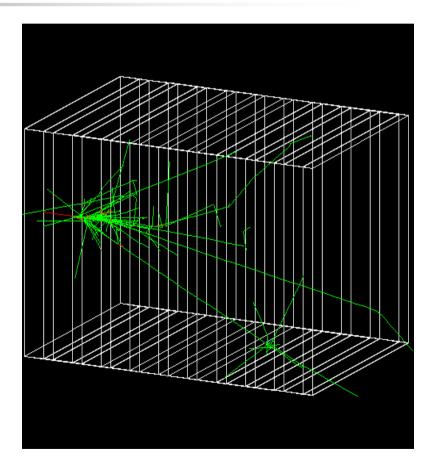
Compile and run N01 (in batch mode)
 cd N01

more README

gmake

- compile and link create the executable called 'exampleN01' in \$G4WORKDIR/bin/\$G4SYSTEM
- uses the recipe how to do this in GNUmakefile

\$G4WORKDIR/bin/\$G4SYSTEM/exampleN01


- runs Geant4 for simple setup, gives you some output : a tracker tube and a sandwich calorimeter made of boxes, it shoots a geantino per event (does not interact)
- Type exit at the Idle prompt to quit
- When you are done

gmake clean

• this deletes the executable, as exampleN01 is very limited

Novice Example N03

- Sampling calorimeter with layers of Pb absorber and liquid Ar detection gaps (replicas)
- Exhaustive material definitions
- Command interface
- Randomization of incident beam
- All EM processes + decay, with separate production cuts for γ, e+, e- (use for shower studies)
- Detector response: E deposit, track length in absorber and gap
- Visualization tutorial
- Random number seed handling

- First, examine N03

 cd ../N03
 nedit README & (in particular, how to start section)
 nedit exampleN03.cc &
- main()
 - the Geant4 toolkit does not provide main()
 - there are more 70 examples
- Initialization classes
 - Detector Construction
 - Physics List

Note : classes written in red are mandatory !

- Action classes : are invoked during an event loop
 - Primary Generator Action
 - Run Action
 - Event Action
 - Tracking Action
 - Stepping Action
 - Stacking Action
- you can define VisManager, (G)UI session, optional user action classes, and/or your persistency manager in your main()

Compile and run novice example N03

cd ../N03 gmake

execute N03 in batch mode

nedit run1.mac &
\$G4WORKDIR/bin/\$G4SYSTEM/exampleN03 run1.mac

execute N03 in interactive mode

\$G4WORKDIR/bin/\$G4SYSTEM/exampleN03

- try to enter at the « Idle » prompt /vis/viewer/set/viewpointThetaPhi 30 30 deg and return next enter /run/beamOn 1 and return
- run the macro run1.mac control/execute run1.mac
- To quit
 exit

When you are done, gmake clean

N03 : run1.mac

all comments start with

/control/verbose 2
/control/saveHistory

/run/verbose 2

/event/verbose 0

/tracking/verbose 1

/gun/particle mu+ /gun/energy 300 MeV /run/beamOn 3

- set the verbose level of commands in macro (0, 1, 2)
- store command history to a file
- set the verbose level of run, event, tracking manager

 set particle type, energy, and number of particles to shoot

access all this information by typing Idle>help

N03 : run2.mac

```
/control/verbose 2
#
# electron 30 MeV to the direction
   (1., 0., 0.)
# 1 event
#
/run/beamOn 1
#
                                       # shoot randomly 20 events
#
/N03/event/printModulo 5
/N03/gun/rndm on
/run/beamOn 20
# activate/inactivate physic
   processes
#
/process/list
/process/inactivate eBrem
#
/run/beamOn 20
```

- user command : print events modulo n
- user command : shoot randomly the incident particle
- list of Physics processes
- inactivation of e-Bremsstrahlung

N03 : exo1.mac

```
/N03/det/setNbOfLayers 1
#
/N03/det/setAbsMat Aluminium
                               geometry change
/N03/det/setAbsThick 10 cm
#
/N03/det/setGapMat Air
/N03/det/setGapThick 0 cm
#
/N03/det/setSizeYZ
                    10 cm
#
                               update geometry
/N03/det/update
#
/vis/viewer/zoom 1.3
#
/process/list
/process/inactivate msc
/process/inactivate eBrem
/process/inactivate compt
/process/inactivate conv
#
                               set range cut value :
/run/particle/setCut 10 cm
/run/initialize
                               no secondary generated
#
                               below
/gun/particle e+
/gun/energy 30 MeV
```

N03 : exercice !

Copy exo1.mac to myexoA.mac

- Try to modify myexoA.mac in order to :
 - inactivate photo electric effect instead of Compton
 - shoot 10 MeV gamma particles

N03 : answer

/N03/det/setNbOfLayers 1 # /N03/det/setAbsMat Aluminium /N03/det/setAbsThick 10 cm # /N03/det/setGapMat Air /N03/det/setGapThick 0 cm # /N03/det/setSizeYZ 10 cm # /N03/det/update # /vis/viewer/zoom 1.3 # /process/list /process/inactivate msc /process/inactivate eBrem /process/inactivate phot /process/inactivate conv # /run/particle/setCut 10 cm /run/initialize # /gun/particle gamma /gun/energy 10 MeV

N03 : exercice !

- Copy exol.mac to myexoB.mac
- Try to modify myexoB.mac in order to :
 - set absorber material as water with a thickness of 40 cm
 - hint : Water is a defined material in N03
 - set a detector transverse size of 40 cm
 - set a magnetic field of 3 T...
 - hint : use help...

N03 : answer

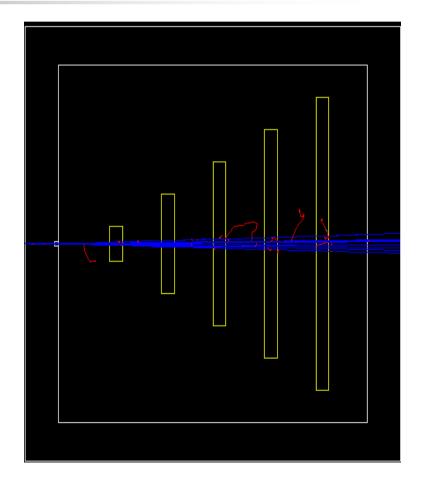
/N03/det/setNbOfLayers 1 # /N03/det/setAbsMat Water /N03/det/setAbsThick 40 cm # /N03/det/setGapMat Air /N03/det/setGapThick 0 cm # /N03/det/setSizeYZ 40 cm # /N03/det/setField 3 tesla # /N03/det/update # /vis/viewer/zoom 1.3

Trying different visualization outputs with N03

OpenGL

\$G4WORKDIR/bin/\$G4SYSTEM/exampleN03

DAWN


- nedit vis.mac &
- comment the line /vis/open OGLIX,
- uncomment the line /run/beamOn 1
- save and close
- \$G4WORKDIR/bin/\$G4SYSTEM/exampleN03 vis.mac
- create g4_01.prim file
- you can visualize the file with dawn g4_01.prim

WIRED3/HepRApp

- \$G4WORKDIR/bin/\$G4SYSTEM/exampleN03 visTut/heprep.mac
- create the **scene-0.heprep.zip** file
- unzip scene-0.heprep.zip
- you can visualize the file with HepRApp &

Novie Example N02

- Pb target, Xe gas chambers (parameterized volumes)
- All EM processes + decay included for γ, charged leptons and charged hadrons
- Detector response
 - Trajectories and chamber hit collections may be stored
- Visualization of detector and event
- Command interface introduced
 - Can change target, chamber materials, magnetic field, incident particle type, momentum, etc. at run time

N02 : exercice

The default particle is a 3 GeV proton

Write a macro file in order to :

- shoot one event with detailed printing of tracking (level 1)
- then, shoot 3 negative muons of 300 MeV with silent tracking

N02 : answer

```
/run/verbose 2
/event/verbose 0
#
# proton 3 GeV to the direction (0.,0.,1.) (default kinematic)
# 1 event with detailled printing
#
/tracking/verbose 1
/run/beamOn 1
#
# muon 300 MeV to the direction (0.,0.,1.)
# 3 events (no printing)
#
/gun/particle mu-
/gun/energy 300 MeV
/tracking/verbose 0
/run/beamOn 3
```

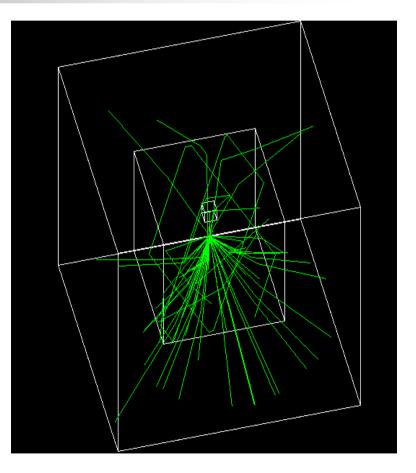
N02 : exercice

The default particle is a 3 GeV proton

Write a macro file in order to :

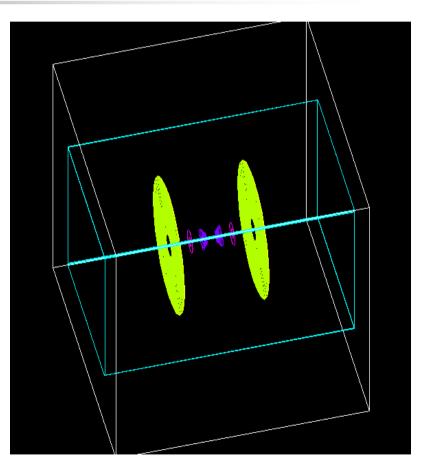
- shoot one event with detailed printing (1)
- then, add a 2 T magnetic field and shoot one event with silent tracking
- try to print the hits (1)

N02 : answer


```
/run/verbose 2
/event/verbose 0
#
# proton 3 GeV to the direction (0.,0.,1.) (default kinematic)
# 1 event with detailled printing
#
/tracking/verbose 1
/run/beamOn 1
#
# set a magnetic field
# 1 events; print the hits
#
/N02/det/setField 2 tesla
/tracking/verbose 0
/hits/verbose 1
/run/beamOn 1
```

To be continued...

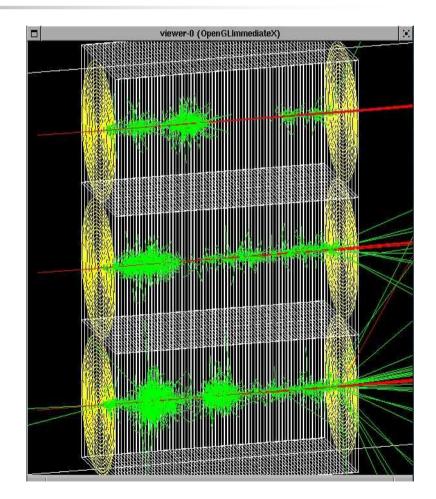
- Wednesday during Hands ON 3
- 16:00 17:30
- by Michel, Vladimir, Gunter, Aathos...


Novice Example N06

- Water Cerenkov detector with air "bubble"
- Materials
 - Specification of optical properties
 - Specification of scintillation spectra
- Physics
 - Optical processes
 - Generation of Cerenkov radiation, energy loss collected to produce scintillation

Novie Example N04

- Simplified collider detector
 - all kinds of volume definitions
- Magnetic field
- PYTHIA primary event generator
 - Higgs decay by Z0, lepton pairs
- Full set of EM + hadronic processes
 - Should use updated hadronic physics lists
- Event filtering by using stacking mechanism



Novice Example N05

- Fast simulation with parameterized showers
 - EM showers (derived from G4VFastSimulationModel)
 - Pion showers (for illustration only not used)
- EM physics only
 - Use of G4FastSimulationManagerProcess
- Simplified collider detector geometry
 - Drift chamber
 - EM, hadronic calorimeter
 - Ghost volume

Novice Example N07

- 3 simplified sandwich calorimeters (Pb, Al, Ar)
- Cylindrical ghost volume for scoring
- Run-based (as opposed to event-based) hit accumulation
- Changing geometries without rebuilding world
- Setting different secondary production cuts for each calorimeter using G4Region

Histogramming with Extended exemple AnaEx01

cd ..

cp -r \$G4INSTALL/examples/extended/analysis/AnaEx01.

nedit src/AnaEx01AnalysisManager.cc &

Replace

```
std::string opts = "compress=no";
fTree = treeFactory->create("AnaEx01.aida","xml",false,true,opts);
// std::string opts = "export=root";
// fTree = treeFactory->create("AnaEx01.root","ROOT",false,true,opts);
```

by

// std::string opts = "compress=no";
// fTree = treeFactory->create("AnaEx01.aida","xml",false,true,opts);
std::string opts = "export=root";
fTree = treeFactory->create("AnaEx01.root","ROOT",false,true,opts);

cp analysis/jas/run.mac.

gmake

\$G4WORKDIR/bin/\$G4SYSTEM/AnaEx01 run.mac

At the end, the ROOT file AnaEx01.root is created. You can browse it with

root > TBrowser g