### Geant4 release 9.6+P01

Vladimir Ivanchenko, CERN

Michel Maire, IN2P3

Sebastien Incerti, IN2P3

on behalf of Geant4 electromagnetic working groups

# ELECTROMAGNETIC PHYSICS STANDARD CATEGORY

## Content

- □ Electromagnetic (EM) physics overview
  - Introduction
  - Structure of Geant4 EM sub-packages
  - Processes and models
- □ How to invoke EM physics in Geant4?
  - EM Physics lists
  - How to extract physics?
- Details of selected standard models
  - Ionisation
  - Multiple scattering
- □ Geant4 cuts
- □ Where to find help?

### Located in \$G4INSTALL/sources/processes/electromagnetic

## Geant4 EM packages

#### Standard

- $\square$   $\gamma$ , e up to 100 TeV
- hadrons up to 100 TeV
- ions up to 100 TeV

#### ☐ Muons

- up to 1 PeV
- energy loss propagator

### X-rays

X-ray and optical photon production proc.

### High-energy

- processes at high energy (E>10GeV)
- physics for exotic particles

#### Polarisation

simulation of polarized beams

### Optical

optical photon interactions

### Low-energy

- Livermore library  $\gamma$ , e- from 250 eV up to 1 GeV
- Livermore library based polarized processes
- PENELOPE code rewrite, γ, e-, e+ from 100 eV
   up to 1 GeV (2008 version)
- hadrons and ions up to 1 GeV
- atomic de-excitation (fluorescence + Auger)

### Geant4-DNA

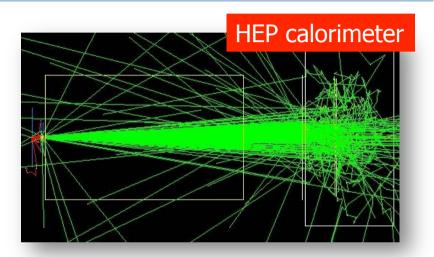
 microdosimetry models for radiobiology (Geant4-DNA project) from eV to ~100 MeV

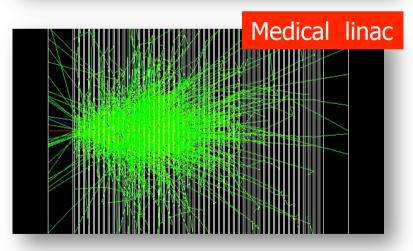
### Adjoint

 New sub-library for reverse Monte Carlo simulation from the detector of interest back to source of radiation

#### □ Utils

general EM interfaces


# Gamma and electron transport


### Photon processes

- γ conversion into e+e- pair
- Compton scattering
- Photoelectric effect
- Rayleigh scattering
- Gamma-nuclear interaction in hadronic sub-package

### Electron and positron processes

- lonisation
- Coulomb scattering
- Bremsstrahlung
- Positron annihilation
- Nuclear interaction in hadronic sub-package
- Suitable for HEP & many other Geant4 applications with electron and gamma beams





# Software design

- □ Since Geant4 9.3beta (June, 2009) the design is uniform for all EM packages
  - Allowing a coherent approach for high-energy and low-energy applications
- A physical interaction or process is described by a process class
  - Naming scheme : « G4ProcessName »
  - For example: G4ComptonScattering for photon Compton scattering
  - Assigned to Geant4 particle types
  - □ Inherits from G4VEmProcess base class
- A physical process can be simulated according to several models, each model being described by a model class
  - Naming scheme : « G4ModelNameProcessNameModel »
  - □ For example: G4LivermoreComptonModel
  - Models can be assigned to certain energy ranges and G4Regions
  - Inherit from G4VEmModel base class
- Model classes provide the computation of
  - Cross section and stopping power
  - Sample selection of atom in compound
  - Final state (kinematics, production of secondaries...)

## Physics lists

- A Physics list is the mandatory user class making the general interface between the physics the user needs and the Geant4 kernel
  - It should include the list of particles
  - The G4ProcessManager of each particle maintains a list of processes
- Geant4 provides several configurations of EM physics lists called constructors (G4VPhysicsConstructor) in the physics\_lists library of Geant4
- These constructors can be included into a modular Physics list in a user application (G4VModularPhysicsList)

## Geant 4 9.6: EM Physics constructors for HEP

## List of particles for which EM physics processes are defined

$$\begin{split} \gamma,\, e^{\pm},\, \mu^{\pm},\, \kappa^{\pm},\, K^{\pm}\,,\, \mathsf{p},\, \Sigma^{\pm},\, \Xi^{-},\, \Omega^{-},\, \mathsf{anti}(\Sigma^{\pm},\, \Xi^{-},\, \Omega^{-}) \\ \tau^{\pm},\, \mathsf{B}^{\pm},\, \mathsf{D}^{\pm},\, \mathsf{D}_{\mathsf{s}}^{\pm},\, \Lambda_{\mathsf{c}}^{+},\, \Sigma_{\mathsf{c}}^{+},\, \Sigma_{\mathsf{c}}^{++},\, \Xi_{\mathsf{c}}^{+}\,\,,\, \underline{\mathsf{anti}}(\Lambda_{\mathsf{c}}^{+},\, \Sigma_{\mathsf{c}}^{+},\, \Sigma_{\mathsf{c}}^{++},\, \Xi_{\mathsf{c}}^{+}) \\ \mathsf{d},\, \mathsf{t},\, \mathsf{He3},\, \mathsf{He4},\, \mathsf{GenericIon},\, \mathsf{anti}(\mathsf{d},\, \mathsf{t},\, \mathsf{He3},\, \mathsf{He4}) \end{split}$$

| Constructor                 | Components                                                                        | Comments                                                                              |
|-----------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| G4EmStandardPhysics         | Default<br>(QGSP_BERT, FTFP_BERT)                                                 | ATLAS and other HEP productions, other applications                                   |
| G4EmStandardPhysics_option1 | Fast due to simple step limitation, cuts used by photon processes (FTFP_BERT_EMV) | Similar to the one used by CMS, good for crystals, not good for sampling calorimeters |
| G4EmStandardPhysics_option2 | Experimental: updated photon models and bremsstrahlung on top of Opt1             | Similar to the one used by LHCb                                                       |

# Geant 4 9.6: EM Physics constructors for space and medical applications

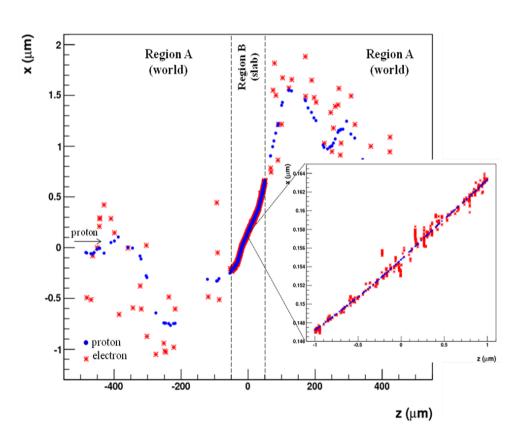
| Constructor                 | Components                                                                                                                     | Comments                          |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|
| G4EmStandardPhysics_option3 | Msc95 for prticle types, standard models when applicable                                                                       | The <u>most accurate</u> standard |  |
| G4EmStandardPhysics_option4 | WentzelVI at high energy, msc95<br>below 100 MeV, photon models from<br>Livermore and Penelope, Livermore<br>ionisation for e- | The most accurate EM physics      |  |
| G4EmLivermore               | Livermore models when applicable                                                                                               | Livermore                         |  |
| G4EmPenelope                | Penelope models when applicable                                                                                                | Penelope                          |  |
| G4EmLivermorePolarized      | Polarized models                                                                                                               |                                   |  |
| G4EmDNA                     | Example of DNA physics                                                                                                         |                                   |  |
| G4EmLowEPPhysics            | Livermore models when applicable + MU Compton                                                                                  |                                   |  |

# User interfaces and helper classes

- □ G4EmCalculator
  - easy access to cross sections and stopping powers (TestEmO)
- □ G4EmProcessOptions
  - C++ interface to EM options alternative to UI commands
- □ G4EmSaturation
  - Birks effect (recombination effects)
- □ G4ElectronIonPair
  - sampling of ionisation clusters in gaseous or silicon detectors
- □ G4EmConfigurator
  - add models per energy range and geometry region

## Example: G4EmStandardPhysics

```
G4PhysicsListHelper* ph = G4PhysicsListHelper::GetPhysicsListHelper();
G4String particleName = particle->GetParticleName();


if ( particleName == "gamma" ) {
    ph->RegisterPhysics(new G4PhotoElectricEffect, particle);
    ph->RegisterPhysics(new G4ComptonScattering, particle);
    ph->RegisterPhysics(new G4GammaConversion, particle);
} else if ( particleName == "e+" ) {
    ph->RegisterPhysics(new G4eMultipleScattering, particle);
    ph->RegisterPhysics(new G4eIonisation, particle);
    ph->RegisterPhysics(new G4eBremsstrahlung, particle);
    ph->RegisterPhysics(new G4ePlusAnnihilation, particle);
```

### □ G4PhysicsListHelper provides

- Activation of a process AtRest, AlongStep, PostStep according to the process SubType
- Process ordering for process manager

# Specialized models per G4Region: example of Geant4-DNA physics

- Standard EM physics constructor as a base
- G4EmConfigurator is used to add Geant4-DNA models
- Geant4-DNA models are enabled only in the small G4Region for energy below 10 MeV
- CPU performance optimisation



## Atomic de-excitation effects

- Atomic de-excitation initiated by other EM processes
  - Examples: photo-electric effect, ionisation by e- and ions (eg. PIXE)
  - Leave the atom in an excited state
- EADL data contain transition probabilities
  - radiative: fluorescence
  - non-radiative:
    - Auger e-: inital and final vacancies in different sub-shells
    - Coster-Kronig e-: identical sub-shells
- Atomic de-excitation simulation is now compatible with both Standard & Low Energy EM categories
- See more in the talk on Low Energy EM physics

# How to extract Physics?

- Possible to retrieve Physics quantities using a G4EmCalculator object
- Physics List should be initialized
- Example for retrieving the total cross section of a process with name procName, for particle and material matName

```
#include "G4EmCalculator.hh"
...
G4EmCalculator emCalculator;

G4Material* material =
    G4NistManager::Instance()->FindOrBuildMaterial(matName);

G4double density = material->GetDensity();

G4double massSigma = emCalculator.ComputeCrossSectionPerVolume
    (energy,particle,procName,material)/density;

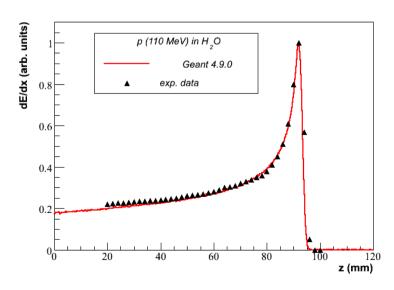
G4cout << G4BestUnit(massSigma, "Surface/Mass") << G4endl;</pre>
```

A good example: \$G4INSTALL/examples/extended/electromagnetic/TestEm14. Look in particular at the RunAction.cc class

# Details of selected standard models: lonisation

## Hadron and ion ionisation



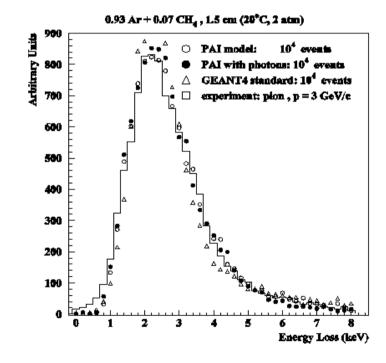

Bethe-Bloch formula with corrections used for E>2 MeV

$$-\frac{dE}{dx} = 4\pi N_e r_0^2 \frac{z^2}{\beta^2} \left[ \ln \frac{2m_e c^2 \beta^2 \gamma^2}{I} - \frac{\beta^2}{2} \left( 1 - \frac{T_c}{T_{\text{max}}} \right) - \frac{C}{Z} + \frac{G - \delta - F}{2} + zL_1 + z^2 L_2 \right]$$

- C shell correction
- G Mott correction
- $\delta$  density correction
- F finite size correction
- L<sub>1</sub>- Barkas correction
- L<sub>2</sub>- Bloch correction
- Nuclear stopping
- lon effective charge



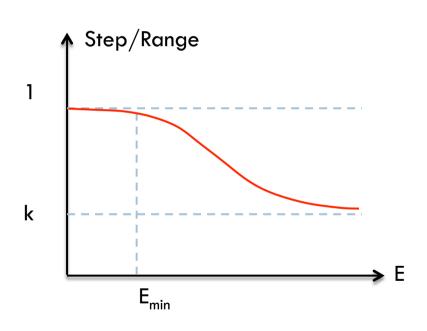
ICRU'49 and NIST databases




## Simulation of a step of a charged particle

- The Bethe-Bloch formula (or low-energy parametrisation) provides value of mean energy loss
- Values of mean dE/dx, range and cross section of δ-electron production are pre-computed at initialisation stage of Geant4 and are stored in G4PhysicsTables
- Spline interpolation is used at run time for fast interpolation at each simulation step to get mean energy loss
- And sampling of energy loss fluctuation is performed
  - The interface to a fluctuation model G4VEmFluctuationModel
- The cross section of  $\delta$ -electron production is used to sample production above the threshold  $T_{cut}$  at PostStep
- If de-excitation is active then fluorescence and Auger electron production is sampled AlongStep

## Geant4 models of energy loss fluctuations

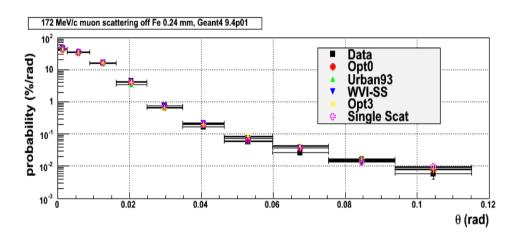

- □ Two models
- Urban model based on a simple model of particle-atom interaction
  - Atoms are assumed to have only two energy levels  $E_1$  and  $E_2$
  - Particle-atom interaction can be
    - an excitation of the atom with energy loss  $E = E_1 E_2$
    - an ionization with energy loss distribution  $g(E) \sim 1/E^2$
- PAI model uses photo absorption cross section data
  - Energy transfers are sampled with production of secondary e<sup>-</sup> or γ
  - Very slow model, should be applied for sensitive region of detector

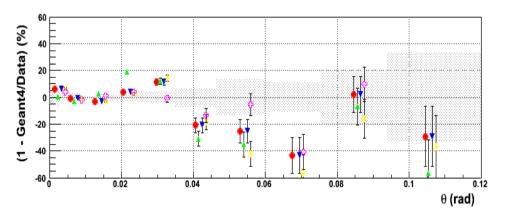


# Step limitation by ionisation process

- To guarantee precision of computation, step size should be limited
- Step limit S is defined by stepping function
- It takes into account particle range R and two parameters, k (dRoverRange) and p (finalRange)

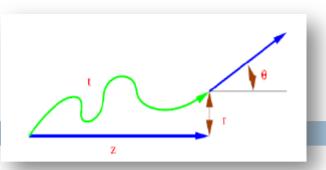
/process/eLoss/StepFunction 0.1 50 um





$$S/R = k + \rho/R \cdot (1-k) \cdot (2-\rho/R)$$

# Details of selected standard models: Multiple scattering

## Multiple Coulomb Scattering (MSC)


- Charged particles
   traversing a finite thickness
   of matter suffer elastic
   Coulomb scattering
- The cumulative effect of these small angle scatterings is a net deflection from the original particle direction
- MSC implementation determine accuracy and CPU performance of simulation





#### 22

# MSC algorithm



### Legend

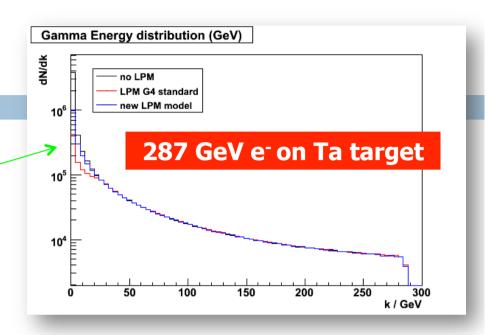
- True path length: t
- Longitudinal or geometrical displacement : z
- Lateral displacement : r
- Angular deflection :  $(\theta, \Phi)$
- The algorithm performs several steps for the simulation of MSC which are essentially the same for many (condensed ) simulations
  - The physics processes and the geometry select the step length;
    MSC performs the t ↔ z transformation only
  - The transport along the initial direction is not MSC's business
  - $\square$  Sampling of scattering angle ( $\theta$ ,  $\Phi$ )
  - Computing of lateral displacement and relocation of particle

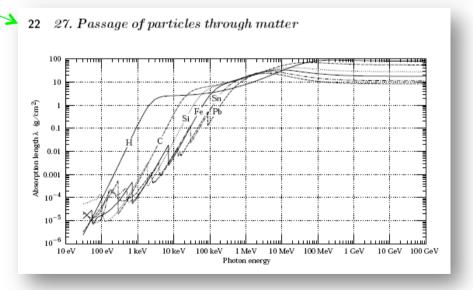
# MSC and single scattering models

| Model                                                                  | Particle type                           | Energy limit | Specifics and applicability                                                                                                                                                             |
|------------------------------------------------------------------------|-----------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Urban (Urban 2006)                                                     | Any                                     | -            | Default model for electrons and positrons below 100 MeV, (Lewis 1950) approach, tuned to data, <u>used for LHC production</u>                                                           |
| Screened Nuclear Recoil<br>(Mendenhall and Weller 2005)                | p, ions                                 | < 100 MeV/A  | Theory based process, providing simulation of nuclear recoil for sampling of radiation damage, focused on precise simulation of effects for space app                                   |
| Goudsmit-Saunderson<br>(Kadri 2009)                                    | e <sup>+</sup> , e <sup>-</sup>         | < 1 GeV      | Theory based cross sections (Goudsmit and Saunderson 1950). EPSEPA code developed by Penelope group, final state using EGSnrc method (Kawrakov et al. 1998), precise electron transport |
| Coulomb scattering (2008)                                              | any                                     | -            | Theory based (Wentzel 1927) single scattering model, uses nuclear form-factors (Butkevich et al. 2002), focused on muons and hadrons                                                    |
| WentzelVI (2009)                                                       | any                                     | -            | MSC for small angles, Coulomb Scattering (Wentzel 1927) for large angles, focused on simulation for muons and hadrons                                                                   |
| lon Coulomb scattering (2010)<br>Electron Coulomb scattering<br>(2012) | lons<br>e <sup>+</sup> , e <sup>-</sup> | -            | Model based on Wentzel formula + relativistic effects + screening effects for projectile & target. From the work of P. G. Rancoita, C. Consolandi and V. Ivantchenko.                   |

## **MSC** classes

- Processes per particle type are available
  - G4eMultipleScattering for e+/e-
  - G4MuMultipleScattering for  $\mu$ +/ $\mu$ -
  - G4hMultipleScattering for hadrons and ions
- L. Urban models
  - □ G4UrbanMscModel93: used for LHC production for backward compatibility
  - G4UrbanMscModel95: used by default in G4eMultipleScattering
  - □ G4UrbanMscModel96: the most recent tuning of the model
    - will be future default
- Alternative single and multiple scattering models are available to users
  - see extended examples...


## Step limitation for charged particle transport


- Step size of a charged particle may be limited by several Geant4 processes
  - Ionisation
    - discussed in previous slide
  - Multiple scattering
    - strong step limitation near geometry boundary
      - 3 modes: Minimal, UseSafety, UseDistanceToBoundary
  - Delta-electron production and bremsstrahlung
    - cut dependent
  - User defined step limit
- Simulation results strongly depend on step limit method

# Geant4 cuts

## Bremsstrahlung

- Bremsstrahlung spectrum grows at low energy as 1/k
  - k is the gamma energy
- Low energy gammas have very small absorption length
- Simulation of all low-energy gammas is non-efficient
- Cuts/production threshold are used in all Monte Carlo codes
- Gamma emission below production threshold is taken into account as a continuous energy loss
- Similar approach is used for the ionisation process where spectrum of delta-electrons is proportional to 1/T<sup>2</sup>





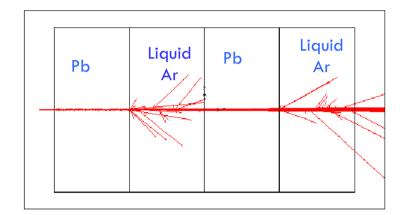
# Cut and production thresholds for energy loss processes

- User defines a cut in range expressed in units of length
- Using this range, the Geant4 kernel computes production threshold T<sub>cut</sub> for each material during initialization
- For a typical process (G4hlonisation, G4elonisation, ...), the production threshold T<sub>cut</sub> subdivides the continuous and discrete parts of energy loss:
  - Mean rate of energy lost due to soft energy transfers

$$\frac{dE(E, T_{cut})}{dx} = n_{at} \int_{0}^{T_{cut}} T \frac{d\sigma(Z, E, T)}{dT} dT$$

 $\blacksquare$  Total XS for discrete delta-electron production above  $T_{\rm cut}$ 

$$\sigma(Z, E, \frac{T_{cut}}{T_{cut}}) = \int_{T_{cut}}^{T_{max}} \frac{d\sigma(Z, E, T)}{dT} dT$$


- At each step, the energy deposition is sampled by a fluctuation model using the computed mean energy loss
- Optionally, energy loss may be modified
  - for the generation of extra delta-electrons under the threshold when the track is in the vicinity of a geometrical boundary (sub-cutoff)
  - for the sampling of fluorescence and Auger-electrons emission
- 4-momentum balance is provided in all cases

## Effect of production thresholds

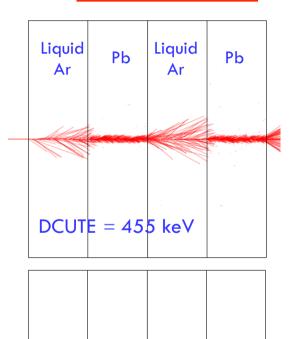
500 MeV incident protons on EM Pb/LAr calorimeter

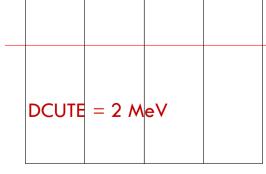
29

### In Geant4



## One sets the production threshold for delta rays as a <u>unique range</u>:


1.5 mm


It is converted by Geant4 to energy

 $T_c = 455 \text{ keV}$  electron energy in liquid Ar

 $T_c = 2 \text{ MeV}$  electron energy in Pb

### In Geant3





one has to set the cut for delta-rays (DCUTE) as an energy threshold

Either to the Liquid Argon value, thus producing many small unnecessary delta-rays in Pb,

Or to the Pb value, thus killing the delta-rays production everywhere

## Which particles have cuts?

- Since Geant 4 9.3 cuts are defined for
  - Gamma
  - Electron
  - Positron
  - Proton

 Cut for proton is used for all hadrons and ions by elastic scattering processes

# Which processes use cuts?

- □ It is not mandatory to use cuts
- Energy thresholds for gamma are used in Bremsstrahlung
- Energy thresholds for electrons are used in ionisation and e+epair production processes
- Energy threshold for positrons is used in the e+e- pair production process
- Energy threshold for protons is used in processes of elastic scattering for hadrons and ions defining the threshold for kinetic energy of nuclear recoil
- Energy thresholds for gamma and electrons are used optionally in all discrete processes ("ApplyCuts" options)
  - Photoelectric effect, Compton, gamma conversion

## Comments

- Range cut approach was established for simulation of energy deposition inside solid or liquid media
  - Sampling and crystal calorimeters
  - Silicon tracking
- For specific user application, it may be revised, for example, by defining different cuts in range for electron and gamma
  - Gaseous detectors
  - Muon system
- Tracking cuts may be also used (saving some CPU) for simulation of penetration via shielding or for simulation in non-sensitive part of the apparatus
  - Astrophysics applications
  - Nanodosimetry

# How to define cut in range?

- Use UI interface to geant4 kernel
  - /run/setCut 0.1 mm
  - /run/setCutForAGivenParticle e- 10 um
- Or implement a virtual method SetCuts() of G4VUserPhysicsList
- □ In Geant4 examples, several different implementations of cut definition in user code are shown
  - including user defined UI commands
  - \$G4INSTALL/examples/extended/electromagnetic

# Cuts per G4Region

- Uniform cut in range provides balanced simulation of particle transport in media with different density
- Requirements for precision in different parts of complex geometry may be very different
  - Micron precision in tracking devices
    VS millimeter precision in calorimeters
  - Unique value of the cut in range may be not effective and not practical

# WHERE to find help?

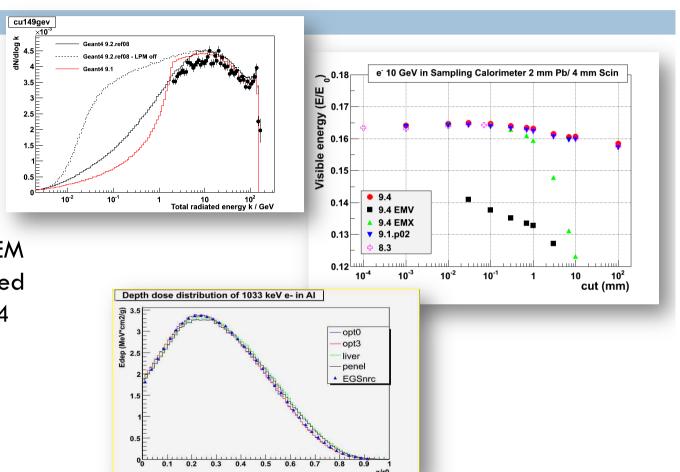
## List of main Geant4 documents and tools

### User documents

- Application Developers' Guide
- Installation Guide
- Toolkit Developer Guide
- Examples
- Physics Reference Manual

### User tools

- Linux Crossed Reference (LXR) source code browser
- HyperNews User Forum
- Bug report system


# Suggestions

- The list of available EM processes and models is maintained by the EM working groups, see more in the EM web pages
  - http://cern.ch/geant4/collaboration/working\_groups/electromagnetic/index.shtml
- Geant4 extended and advanced examples show how to use
   EM processes and models
  - Located in \$G4INSTALL/examples
- Visit the Geant4 HyperNews forum, section
   "electromagnetic processes" for discussion
- Use Geant4 bug report system for problems
- User feedback is always welcome

# Validation repository

3

verification tool has been developed for easy comparison of EM physics results obtained with different Geant4 version, and with measurements



## To learn more

### \$G4INSTALL/examples/extended/electromagnetic

#### **Check basic quantities**

| Total cross sections, mean free paths, SP                                    | TestEm0, Em13, Em14       |        |
|------------------------------------------------------------------------------|---------------------------|--------|
| Stopping power, particle range                                               | Em0, Em1, Em5, Em11, Em12 |        |
| Final state : energy spectra, angular distributions                          | Em14                      |        |
| Energy loss fluctuations                                                     | Em18                      |        |
| Multiple Coulomb scattering                                                  |                           |        |
| as an isolated mechanism                                                     | Em15                      |        |
| as a result of particle transport                                            | Em5                       |        |
| More global verifications                                                    |                           | Refe   |
| Single layer: transmission, absorption, reflexion , atomic deexcitation, msc | Em5                       | extend |
| Bragg curve, tallies                                                         | Em7                       | Арр    |
| Depth dose distribution                                                      | Em11, Em12                | Vhh    |
| Shower shapes, Moliere radius                                                | Em2                       |        |
| Sampling calorimeters, energy flow                                           | Em3                       |        |
| Crystal calorimeters                                                         | Em9                       |        |
| Other specialized programs                                                   |                           |        |
| High energy muon physics                                                     | Em17                      |        |
| Other rare, high energy processes                                            | Em6                       |        |
| Synchrotron radiation                                                        | Em16                      |        |
| Transition radiation                                                         | Em8                       |        |
| Photo-absorption-ionization model                                            | Em10                      |        |

Refer to section on extended examples in App. User Guide.