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Extract useful information 
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¨  Given geometry, physics and primary track generation,  
Geant4 does proper physics simulation “silently” 
¤  You have to add a bit of code to extract information useful to you 

¨  There are several ways 
¤  Use user hooks (G4UserTrackingAction, G4UserSteppingAction, etc.) 

n  You have full access to almost all information 

n  Straight-forward, but do-it-yourself 

¤  Use sensitive detectors : assign G4VSensitiveDetector to a volume and optionally generate 
“hits” 
n  Use user hooks (G4UserEventAction, G4UserRunAction) to get event / run summary 

¤  Built-in scoring commands 
n  Most commonly-used physics quantities are available. 

¤  (other less common alternatives)  



1) USER HOOKS 
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User hooks 
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¨  “Do it yourself” approach 

¨  In Geant4, you have full access to almost all information 
¤  G4UserSteppingAction 
¤  G4UserTrackingAction 
¤  G4UserEventAction 
¤  G4UserRunAction 

¨  Well adapted to small applications & Geant4 examples 

¨  In large applications, where many data from many volumes need to be recorded, 
too heavy  
¤  Crowded SteppingAction 
¤  Need to subdivise problem, which Sensitive Detectors already do for you 



Principle 
6 

¨  In your SteppingAction, check that particle is in volume A and 
do what you want 

¨  Usually, your containers and histograms will be attributes of 
Track, Event or Run  
¤  therefore you will have to instanciate TrackingAction and/or EventAction and/or 

RunAction  
¤  pass their pointer to SteppingAction 

¨  This approach is illustrated in  
¤  examples/novice N03, N06, 

¤  extended/electromagnetic, optical, and many others ... 



Geometrical information - 1 
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¨  A G4Step object consists of two points 

  

         G4StepPoint* point1 = step->GetPreStepPoint(); 

    G4StepPoint* point2 = step->GetPostStepPoint(); 

                

¨  To get their positions in the global coordinate system 

         G4ThreeVector pos1 = point1->GetPosition(); 

    G4ThreeVector pos2 = point2->GetPosition(); 

  

¨  Hereafter we call 'current volume' the volume where the step has just gone through 

 

Geometrical information is available from preStepPoint ! 

                   



Geometrical information - 2 
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¨  G4VTouchable and its derivates keep these geometrical information 

         G4TouchableHandle touch1 = point1->GetTouchableHandle(); 

¨  To get the current volume 

 G4VPhysicalVolume* volume = touch1->GetVolume(); 

  

¨  To get its name 

 G4String name = volume->GetName(); 

        

¨  To get copy number 

 G4int copyNumber = touch1->GetCopyNumber(); 

¨  To get logical volume 

 G4LogicalVolume* lVolume = volume->GetLogicalVolume(); 



Geometrical information - 3 
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¨  To get material the following statements are equivalent 

  G4Material* material = point1->GetMaterial(); 

  G4Material* material = lVolume->GetMaterial();         

                 

¨  To get region 

  G4Region* region = lVolume->GetRegion(); 

        

¨  To get mother volume 

  G4VPhysicalVolume* mother = touch1->GetVolume(depth=1); 

  grandMother: depth=2 ...etc... 

         

¨  To get copy number of mother 

  G4int copyNumber = touch1->GetCopyNumber(depth=1); 

  grandMother: depth=2 ...etc… 



Geometrical information - 4 
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¨  To check that particle has just entered in the current volume, ie. is at the first step in the volume;   
the preStepPoint is at boundary 

  if (point1->GetStepStatus() == fGeomBoundary) 

        

¨  To check that particle is leaving the current volume, ie. is at the last step in the volume;  
the postStepPoint is at boundary 

  if (point2->GetStepStatus() == fGeomBoundary) 

         

¨  In the above situation, get touchable of the next volume: 

  G4TouchableHandle touch2 = point2->GetTouchableHandle(); 

¨  From touch2, all information on the next volume as above. 



Physics 
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¨  To get the process which has limited the current step 

  G4VProcess* aProcess = point2->GetProcessDefinedStep(); 

 

¨  Current particle name 

  step->GetTrack()->GetDynamicParticle()->GetDefinition()->GetParticleName() 

¨  Physics quantities are available from step (G4Step) or track (G4Track) 

¨  To get energy deposition, step length, displacement and time of flight spent by this step 

  G4double eDeposit      = step->GetTotalEnergyDeposit(); 

  G4double sLength       = step->GetStepLength(); 

  G4ThreeVector displace = step->GetDeltaPosition(); 

  G4double tof           = step->GetDeltaTime(); 

¨  To get momentum, kinetic energy and global time (time since the beginning of the event) of the track after the completion of the current step 

  G4Track* track         = step->GetTrack(); 

  G4ThreeVector momentum = track->GetMomentum(); 

  G4double kinEnergy     = track->GetKineticEnergy(); 

  G4double globalTime    = track->GetGlobalTime(); 

¨  Additional remark: to transform position from the global coordinate system to the local system of current volume, use preStepPoint transformation 

  G4ThreeVector localPosi = touch1->GetHistory()->GetTopTransform().TransformPoint(position);  



And more… 
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¨  Similarly in TrackingAction one can access track information  
 

void MyTrackingAction::PostUserTrackingAction(const G4Track* track) 

{ 

 G4double tracklen = track->GetTrackLength(); 

 G4double charge   = track->GetDefinition()->GetPDGCharge(); 

… 

¨  See more in 
¤  $G4INSTALL/include/Geant4/G4Step.hh 
¤  $G4INSTALL/include/Geant4/G4Track.hh 

¤  … 

¨  You can retrieve easily quantities at each step and cumulate them over events or run using 
user accessors/ recorders added to your EventAction and RunAction classes 
G4double dose = aStep->GetTotalEnergyDeposit()/MassTarget; 

Run->AddDose(dose); 



2) SENSITIVE DETECTORS 



A sensitive detector ? 
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¨  A sensitive detector can be used to simulate the 
“read-out” of your detector: 

¤  It is a way to declare a geometric element “sensitive” to the 
passage of particles 

¤  It gives the user a handle to collect quantities from these 
elements at stepping time 
n  For example: energy deposited, position, time information 



Sensitive detector 

¨  A G4VSensitiveDetector object can be assigned to G4LogicalVolume 

¨  In case a step takes place in a logical volume that has a G4VSensitiveDetector object, this 
G4VSensitiveDetector is invoked with the current G4Step object 
¤  You can implement your own sensitive detector classes, or use scorer classes provided by Geant4 
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Defining a sensitive detector 

¨  Basic strategy in src/DetectorConstruction.cc 
 

G4LogicalVolume* myLogCalor = ……; 

G4VSensitiveDetector* pSensitivePart = new MyDetector(“/mydet”); 

G4SDManager* SDMan = G4SDManager::GetSDMpointer(); 

SDMan->AddNewDetector(pSensitivePart); 

myLogCalor->SetSensitiveDetector(pSensetivePart); 

¨  Each detector object must have a unique name. 
¤  Different logical volumes can share one detector object. 

¤  More than one SD object can be made from the same SD class with different detector name. 

¤  One logical volume cannot have more than one detector objects. But, one detector object can 
generate more than one kinds of hits. 
n  e.g. a double-sided silicon micro-strip detector can generate hits for each side separately. 

Your SD 
object 



Sensitive detector class 

¨  A sensitive detector is a user-defined class that you need  
to derive from G4VSensitiveDetector 

#include "G4VSensitiveDetector.hh" 

 

class G4Step; 

 

class MyDetector : public G4VSensitiveDetector 

{ 

  public: 

      MyDetector(G4String name); 

      virtual ~MyDetector(); 

       

      virtual G4bool ProcessHits(G4Step*aStep, G4TouchableHistory*ROhist); 

       

}; 

include 

Base class 

SD name in constructor 

At each step 



How to collect information  
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¨  At stepping time, Geant4 kernel checks for you that 
particle is in the sentitive detector  
¤  If yes, it gives you the control to 

G4VSensitiveDetector::ProcessHits() 

¨  do what you want in ProcessHits() using hooks 
¤  See previous section on user hooks to collect information you 

need from step, track… 



3) COMMAND-BASED 
SCORING 
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Command-based scoring 
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¨  Command-based scoring functionality offers built-in scoring mesh and various scorers for 
commonly-used physics quantities such as dose, flux, etc. 

¨  To use this functionality, access to the G4ScoringManager pointer after the instantiation of 
G4RunManager in your main() 

#include “G4ScoringManager.hh” 

int main() 

{ 

  G4RunManager* runManager = new G4RunManager; 

  G4ScoringManager* scoringManager = G4ScoringManager::GetScoringManager(); 

   … 

¨  All of the UI commands of this functionality is in /score/ directory. 

¨  /examples/extended/runAndEvent/RE03 



/example/extended/runAndEvent/RE03 

21 



Define a scoring mesh 
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¨  To define a scoring mesh, the user has to specify the followings 
¤  Shape and name of the 3D scoring mesh.  

n  Box, cylindrical mesh 

¤  Size of the scoring mesh. Mesh size must be specified as "half width" similar to the 
arguments of G4Box.  

¤  Number of bins for each axes. Note that too many bins causes immense memory 
consumption.  

¤  Optionally, position and rotation of the mesh. If not specified, the mesh is positioned at the 
center of the world volume without rotation.  

# define scoring mesh  

/score/create/boxMesh boxMesh_1  

/score/mesh/boxSize 100. 100. 100. cm  

/score/mesh/nBin 30 30 30 

¨  The mesh geometry can be completely independent from the real material 
geometry 



Scoring quantities 
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¨  A mesh may have arbitrary number of scorers. Each scorer scores one physics quantity (xxxxx). 
¤  energyDeposit * Energy deposit scorer. 

¤  cellCharge * Cell charge scorer. 

¤  cellFlux * Cell flux scorer. 

¤  passageCellFlux * Passage cell flux scorer 

¤  doseDeposit * Dose deposit scorer. 

¤  nOfStep * Number of step scorer. 

¤  nOfSecondary * Number of secondary scorer. 

¤  trackLength * Track length scorer. 

¤  passageCellCurrent * Passage cell current scorer. 

¤  passageTrackLength * Passage track length scorer. 

¤  flatSurfaceCurrent * Flat surface current Scorer. 

¤  flatSurfaceFlux * Flat surface flux scorer. 

¤  nOfCollision * Number of collision scorer. 

¤  population * Population scorer. 

¤  nOfTrack * Number of track scorer. 

¤  nOfTerminatedTrack * Number of terminated tracks scorer. 

/score/quantity/xxxxx <scorer_name> 



Filter 
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¨  Each scorer may take a filter 
¤  charged * Charged particle filter. 
¤  neutral * Neutral particle filter. 

¤  kineticEnergy * Kinetic energy filter. 
/score/filter/kineticEnergy <fname> <eLow> <eHigh> <unit> 

¤  particle * Particle filter. 
/score/filter/particle <fname> <p1> … <pn> 

¤  particleWithKineticEnergy * Particle with kinetic energy filter. 

  
/score/quantity/energyDeposit   eDep 

/score/quantity/nOfStep   nOfStepGamma 

/score/filter/particle   gammaFilter   gamma 

/score/quantity/nOfStep   nOfStepEMinus 

/score/filter/particle   eMinusFilter   e- 

/score/quantity/nOfStep   nOfStepEPlus 

/score/filter/particle   ePlusFilter   e+ 

/score/close 

Close the mesh when defining scorers is done.  

Same primitive scorers with 
different filters may be 
defined. 



Drawing a score 
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¨  Projection 
/score/drawProjection <mesh_name> <scorer_name> <color_map> 

¨  Slice 
/score/drawColumn <mesh_name> <scorer_name> <plane> <column> 

<color_map> 

¨  Color map 
¤  By default, linear and log-scale color maps are available. 

¤  Minimum and maximum values can be defined by /score/colorMap/setMinMax command. 
Otherwise, min and max values are taken from the current score. 



Write scores to a file 
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¨  Single score 
/score/dumpQuantityToFile <mesh_name> <scorer_name> <file_name> 

¨  All scores 
/score/dumpAllQuantitiesToFile <mesh_name> <file_name> 

¨  By default, values are written in CSV. 

¨  By creating a concrete class derived from G4VScoreWriter base class, the user can 
define his own file format. 
¤  Example in /examples/extended/runAndEvent/RE03 

¤  User’s score writer class should be registered to G4ScoringManager. 



More than one scoring mesh 
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¨  You may define more than one scoring mesh. 
¤  And, you may define arbitrary number of 

primitive scorers to each scoring mesh. 

¨  Mesh volumes may overlap with other meshes 
and/or with mass geometry. 

¨  A step is limited on any boundary. 

¨  Please be cautious of too many meshes, too 
granular meshes and/or too many primitive 
scorers. 
¤  Memory consumption 

¤  Computing speed 



Summary 
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¨  Geant4 already equipped for scoring 

¨  Several methods 
¤ Use of user hooks at different stages  

(step, track, event, run,…) 
n Methods for the retrieval of Physics quantities 

¤ Sensitive detectors & hit collections 
¤ Built-in commands for scoring 

n A rich variety of physics quantities 


