
SCORING

1

October 10-11, 2013 – Bordeaux, France

Contents
2

¨  What is scoring

¨  Three types of scoring
¤ User hooks
¤ Sensitive detectors
¤ Command-based scoring

Extract useful information
3

¨  Given geometry, physics and primary track generation,
Geant4 does proper physics simulation “silently”
¤  You have to add a bit of code to extract information useful to you

¨  There are several ways
¤  Use user hooks (G4UserTrackingAction, G4UserSteppingAction, etc.)

n  You have full access to almost all information

n  Straight-forward, but do-it-yourself

¤  Use sensitive detectors : assign G4VSensitiveDetector to a volume and optionally generate
“hits”
n  Use user hooks (G4UserEventAction, G4UserRunAction) to get event / run summary

¤  Built-in scoring commands
n  Most commonly-used physics quantities are available.

¤  (other less common alternatives)

1) USER HOOKS

4

User hooks
5

¨  “Do it yourself” approach

¨  In Geant4, you have full access to almost all information
¤  G4UserSteppingAction
¤  G4UserTrackingAction
¤  G4UserEventAction
¤  G4UserRunAction

¨  Well adapted to small applications & Geant4 examples

¨  In large applications, where many data from many volumes need to be recorded,
too heavy
¤  Crowded SteppingAction
¤  Need to subdivise problem, which Sensitive Detectors already do for you

Principle
6

¨  In your SteppingAction, check that particle is in volume A and
do what you want

¨  Usually, your containers and histograms will be attributes of
Track, Event or Run
¤  therefore you will have to instanciate TrackingAction and/or EventAction and/or

RunAction
¤  pass their pointer to SteppingAction

¨  This approach is illustrated in
¤  examples/novice N03, N06,

¤  extended/electromagnetic, optical, and many others ...

Geometrical information - 1
7

¨  A G4Step object consists of two points

 G4StepPoint* point1 = step->GetPreStepPoint();

 G4StepPoint* point2 = step->GetPostStepPoint();

¨  To get their positions in the global coordinate system

 G4ThreeVector pos1 = point1->GetPosition();

 G4ThreeVector pos2 = point2->GetPosition();

¨  Hereafter we call 'current volume' the volume where the step has just gone through

Geometrical information is available from preStepPoint !

Geometrical information - 2
8

¨  G4VTouchable and its derivates keep these geometrical information

 G4TouchableHandle touch1 = point1->GetTouchableHandle();

¨  To get the current volume

 G4VPhysicalVolume* volume = touch1->GetVolume();

¨  To get its name

 G4String name = volume->GetName();

¨  To get copy number

 G4int copyNumber = touch1->GetCopyNumber();

¨  To get logical volume

 G4LogicalVolume* lVolume = volume->GetLogicalVolume();

Geometrical information - 3
9

¨  To get material the following statements are equivalent

 G4Material* material = point1->GetMaterial();

 G4Material* material = lVolume->GetMaterial();

¨  To get region

 G4Region* region = lVolume->GetRegion();

¨  To get mother volume

 G4VPhysicalVolume* mother = touch1->GetVolume(depth=1);

 grandMother: depth=2 ...etc...

¨  To get copy number of mother

 G4int copyNumber = touch1->GetCopyNumber(depth=1);

 grandMother: depth=2 ...etc…

Geometrical information - 4
10

¨  To check that particle has just entered in the current volume, ie. is at the first step in the volume;
the preStepPoint is at boundary

 if (point1->GetStepStatus() == fGeomBoundary)

¨  To check that particle is leaving the current volume, ie. is at the last step in the volume;
the postStepPoint is at boundary

 if (point2->GetStepStatus() == fGeomBoundary)

¨  In the above situation, get touchable of the next volume:

 G4TouchableHandle touch2 = point2->GetTouchableHandle();

¨  From touch2, all information on the next volume as above.

Physics
11

¨  To get the process which has limited the current step

 G4VProcess* aProcess = point2->GetProcessDefinedStep();

¨  Current particle name

 step->GetTrack()->GetDynamicParticle()->GetDefinition()->GetParticleName()

¨  Physics quantities are available from step (G4Step) or track (G4Track)

¨  To get energy deposition, step length, displacement and time of flight spent by this step

 G4double eDeposit = step->GetTotalEnergyDeposit();

 G4double sLength = step->GetStepLength();

 G4ThreeVector displace = step->GetDeltaPosition();

 G4double tof = step->GetDeltaTime();

¨  To get momentum, kinetic energy and global time (time since the beginning of the event) of the track after the completion of the current step

 G4Track* track = step->GetTrack();

 G4ThreeVector momentum = track->GetMomentum();

 G4double kinEnergy = track->GetKineticEnergy();

 G4double globalTime = track->GetGlobalTime();

¨  Additional remark: to transform position from the global coordinate system to the local system of current volume, use preStepPoint transformation

 G4ThreeVector localPosi = touch1->GetHistory()->GetTopTransform().TransformPoint(position);

And more…
12

¨  Similarly in TrackingAction one can access track information

void MyTrackingAction::PostUserTrackingAction(const G4Track* track)

{

 G4double tracklen = track->GetTrackLength();

 G4double charge = track->GetDefinition()->GetPDGCharge();

…

¨  See more in
¤  $G4INSTALL/include/Geant4/G4Step.hh
¤  $G4INSTALL/include/Geant4/G4Track.hh

¤  …

¨  You can retrieve easily quantities at each step and cumulate them over events or run using
user accessors/ recorders added to your EventAction and RunAction classes
G4double dose = aStep->GetTotalEnergyDeposit()/MassTarget;

Run->AddDose(dose);

2) SENSITIVE DETECTORS

A sensitive detector ?
14

¨  A sensitive detector can be used to simulate the
“read-out” of your detector:

¤  It is a way to declare a geometric element “sensitive” to the
passage of particles

¤  It gives the user a handle to collect quantities from these
elements at stepping time
n  For example: energy deposited, position, time information

Sensitive detector

¨  A G4VSensitiveDetector object can be assigned to G4LogicalVolume

¨  In case a step takes place in a logical volume that has a G4VSensitiveDetector object, this
G4VSensitiveDetector is invoked with the current G4Step object
¤  You can implement your own sensitive detector classes, or use scorer classes provided by Geant4

Stepping	
Manager

Physics	
Process

Particle	
Change

Step Track Logical	
Volume

Sensitive	
Detector

GetPhysicalInteractionLength

SelectShortest

DoIt
Fill

Update

Update

IsSensitive

GenerateHits

Defining a sensitive detector

¨  Basic strategy in src/DetectorConstruction.cc

G4LogicalVolume* myLogCalor = ……;

G4VSensitiveDetector* pSensitivePart = new MyDetector(“/mydet”);

G4SDManager* SDMan = G4SDManager::GetSDMpointer();

SDMan->AddNewDetector(pSensitivePart);

myLogCalor->SetSensitiveDetector(pSensetivePart);

¨  Each detector object must have a unique name.
¤  Different logical volumes can share one detector object.

¤  More than one SD object can be made from the same SD class with different detector name.

¤  One logical volume cannot have more than one detector objects. But, one detector object can
generate more than one kinds of hits.
n  e.g. a double-sided silicon micro-strip detector can generate hits for each side separately.

Your SD
object

Sensitive detector class

¨  A sensitive detector is a user-defined class that you need
to derive from G4VSensitiveDetector

#include "G4VSensitiveDetector.hh"

class G4Step;

class MyDetector : public G4VSensitiveDetector

{

 public:

 MyDetector(G4String name);

 virtual ~MyDetector();

 virtual G4bool ProcessHits(G4Step*aStep, G4TouchableHistory*ROhist);

};

include

Base class

SD name in constructor

At each step

How to collect information
18

¨  At stepping time, Geant4 kernel checks for you that
particle is in the sentitive detector
¤  If yes, it gives you the control to

G4VSensitiveDetector::ProcessHits()

¨  do what you want in ProcessHits() using hooks
¤  See previous section on user hooks to collect information you

need from step, track…

3) COMMAND-BASED
SCORING

19

Command-based scoring
20

¨  Command-based scoring functionality offers built-in scoring mesh and various scorers for
commonly-used physics quantities such as dose, flux, etc.

¨  To use this functionality, access to the G4ScoringManager pointer after the instantiation of
G4RunManager in your main()

#include “G4ScoringManager.hh”

int main()

{

 G4RunManager* runManager = new G4RunManager;

 G4ScoringManager* scoringManager = G4ScoringManager::GetScoringManager();

 …

¨  All of the UI commands of this functionality is in /score/ directory.

¨  /examples/extended/runAndEvent/RE03

/example/extended/runAndEvent/RE03

21

Define a scoring mesh
22

¨  To define a scoring mesh, the user has to specify the followings
¤  Shape and name of the 3D scoring mesh.

n  Box, cylindrical mesh

¤  Size of the scoring mesh. Mesh size must be specified as "half width" similar to the
arguments of G4Box.

¤  Number of bins for each axes. Note that too many bins causes immense memory
consumption.

¤  Optionally, position and rotation of the mesh. If not specified, the mesh is positioned at the
center of the world volume without rotation.

define scoring mesh

/score/create/boxMesh boxMesh_1

/score/mesh/boxSize 100. 100. 100. cm

/score/mesh/nBin 30 30 30

¨  The mesh geometry can be completely independent from the real material
geometry

Scoring quantities
23

¨  A mesh may have arbitrary number of scorers. Each scorer scores one physics quantity (xxxxx).
¤  energyDeposit * Energy deposit scorer.

¤  cellCharge * Cell charge scorer.

¤  cellFlux * Cell flux scorer.

¤  passageCellFlux * Passage cell flux scorer

¤  doseDeposit * Dose deposit scorer.

¤  nOfStep * Number of step scorer.

¤  nOfSecondary * Number of secondary scorer.

¤  trackLength * Track length scorer.

¤  passageCellCurrent * Passage cell current scorer.

¤  passageTrackLength * Passage track length scorer.

¤  flatSurfaceCurrent * Flat surface current Scorer.

¤  flatSurfaceFlux * Flat surface flux scorer.

¤  nOfCollision * Number of collision scorer.

¤  population * Population scorer.

¤  nOfTrack * Number of track scorer.

¤  nOfTerminatedTrack * Number of terminated tracks scorer.

/score/quantity/xxxxx <scorer_name>

Filter
24

¨  Each scorer may take a filter
¤  charged * Charged particle filter.
¤  neutral * Neutral particle filter.

¤  kineticEnergy * Kinetic energy filter.
/score/filter/kineticEnergy <fname> <eLow> <eHigh> <unit>

¤  particle * Particle filter.
/score/filter/particle <fname> <p1> … <pn>

¤  particleWithKineticEnergy * Particle with kinetic energy filter.

/score/quantity/energyDeposit eDep

/score/quantity/nOfStep nOfStepGamma

/score/filter/particle gammaFilter gamma

/score/quantity/nOfStep nOfStepEMinus

/score/filter/particle eMinusFilter e-

/score/quantity/nOfStep nOfStepEPlus

/score/filter/particle ePlusFilter e+

/score/close

Close the mesh when defining scorers is done.

Same primitive scorers with
different filters may be
defined.

Drawing a score
25

¨  Projection
/score/drawProjection <mesh_name> <scorer_name> <color_map>

¨  Slice
/score/drawColumn <mesh_name> <scorer_name> <plane> <column>

<color_map>

¨  Color map
¤  By default, linear and log-scale color maps are available.

¤  Minimum and maximum values can be defined by /score/colorMap/setMinMax command.
Otherwise, min and max values are taken from the current score.

Write scores to a file
26

¨  Single score
/score/dumpQuantityToFile <mesh_name> <scorer_name> <file_name>

¨  All scores
/score/dumpAllQuantitiesToFile <mesh_name> <file_name>

¨  By default, values are written in CSV.

¨  By creating a concrete class derived from G4VScoreWriter base class, the user can
define his own file format.
¤  Example in /examples/extended/runAndEvent/RE03

¤  User’s score writer class should be registered to G4ScoringManager.

More than one scoring mesh
27

¨  You may define more than one scoring mesh.
¤  And, you may define arbitrary number of

primitive scorers to each scoring mesh.

¨  Mesh volumes may overlap with other meshes
and/or with mass geometry.

¨  A step is limited on any boundary.

¨  Please be cautious of too many meshes, too
granular meshes and/or too many primitive
scorers.
¤  Memory consumption

¤  Computing speed

Summary
28

¨  Geant4 already equipped for scoring

¨  Several methods
¤ Use of user hooks at different stages

(step, track, event, run,…)
n Methods for the retrieval of Physics quantities

¤ Sensitive detectors & hit collections
¤ Built-in commands for scoring

n A rich variety of physics quantities

