Introduction to Geanr4 Physics Component

Training course at International User Conference on Medicine and Biology applications Bordeaux, 8-11 October 2013 V. Ivanchenko

General interface to Geant4 physics Adaptation of Marc Verderi original lecture

Geant4 cuts

• Cuts per G4Region

Geant4 interface to physics

- The G4ParticleDefinition interface
- The G4VProcess class process interface
- The G4ProcessManager class

Geant4 tracking

• G4Track is the object "pushed" step by step by the tracking :

Moving by one step is the responsibility of the "stepping"

- Which is the core engine of the "tracking" machinery
- These moves/steps have to be physically meaningful
 - And the stepping invokes physics to realize them
- This physics is attached to the G4Track, let's see how.

From G4Track to processes

G4VProcess: 3 kind of actions

- Abstract class defining the common interface of all processes in Geant4:
 - Used by all processes
 - including transportation, etc...
 - Defined in source/processes/management
- Three kinds of actions:
 - AtRest actions:
 - Decay, e⁺ annihilation ...
 - AlongStep actions:
 - To describe continuous (inter)actions, occurring along the path of the particle, like ionisation;
 - **PostStep** actions:

AlongStep

PostStep

G4VProcess : actions summary

- The virtual « action » methods are following:
 - AtRestGetPhysicalInteractionLength(), AtRestDoIt();
 - AlongStepGetPhysicalInteractionLength(),
 AlongStepDoIt();
 - PostStepGetPhysicalInteractionLength(),
 PostStepDoIt();
- Other important virtual method:
 - G4bool IsApplicable(const G4ParticleDefinition &);
 - Used to check if a process can handle the given particle type
 - It is called by the kernel when you set up your physics list

G4VProcess: extensions

- A process can implement any combination of the three AtRest, AlongStep and PostStep actions:
 - decay = AtRest + PostStep

• If you plan to implement your own process:

- A set on intermediate classes exist implementing various combinations of actions:
 - For example:
 - G4VDiscreteProcess: only PostStep actions
 - G4VContinuousDiscreteProcess:AlongStep + PostStep actions

G4ProcessManager

- G4ProcessManager maintains three vectors of actions :
 - One for the AtRest methods of the particle;
 - One for the AlongStep ones;
 - And one for the PostStep actions.
- - Note that the ordering of processes provided by/to the G4ProcessManager vectors is relevant and used by the stepping
 - There are few critical points you should be aware of
 - Multiple scattering can shift end point of a step and step length
 - Scintillation, Cerenkov and some other processes assuming that step and energy deposition at the step are defined

Adding a process in physics list

• Get the process manager of the particle:

G4PhysicsListHelper* helper = G4PhysicsListHelper::GetPhysicsListHelper(); G4ParticleDefinition* electron = G4Electron::Electron();

• Add the process:

helper->RegisterProcess(new G4eIonisation, electron);

There is well defined order of processes
 G4PhysicsListhelper is responsible for the correct odering

About process ordering

- The most strong rule for multiple-scattering and transportation.
- In your physics list, you should **always** have, for the ordering of the AlongGetPhysicalInteractionLength (...) methods:
 - Transportation last
 - For all particles
 - Multiple scattering second last
 - For charged particles only
 - assuming n processes
 [n-2] …

[n-1] multiple scattering

[n] transportation

• Why?

- Processes return a « true path length »;
- The multiple scattering folds up this length into a *shorter* « geometrical » path length;
- Based on this new length, the transportation can geometrically limits the step.

Displaying processes and particles

- When you application has started and when the run manager has been initialized, you can:
- Check the physics processes attached and their ordering:
 - /particle/select e-
 - /particle/processes/dump
- Check what particles exist:
 - /particle/list
- Check a particle property:
 - /particle/select e-
 - /particle/property/dump
- Please type "help" to get the full set of commands

Geant4 cuts

Geant4 approach for cuts

All particles are tracked until it is killed by one of Geant4 process, for example:

- Out of world volume
- Inelastic interaction
- Decay
- If kinetic energy is zero and there is no processes AtRest the particle is killed by stepping manager
- Geant4 by default has no tracking cut but only unique cut in range
 - Physically this means required spatial accuracy of simulation
 - This is the main difference between Geant4 and other simulation tools

Bremsstrahlung

- Bremsstrahlung spectrum grows to low energy as 1/k
 - k is the gamma energy
- Low energy gammas have very small absorption length
- Simulation of all low-energy gammas is non-effective
- Cuts/production threshold are used in all Monte Carlo codes
- Gamma emission below production threshold is taken into account as a continuous energy loss
- Similar approach is used for the ionisation process where spectrum of M-electrons is proportional to 1/T²

22 27. Passage of particles through matter

Cut and production thresholds for energy loss processes

- User defines cut in range expressed in units of lengtl
- Using this range Geant4 kernel compute production threshold T_{cut} for each material during initialization
- For a typical process (G4hIonisation, G4eIonisation, ...), the production threshold T_{cut} subdivides the continuous and discrete parts of energy loss:
 - Mean rate of energy lost due to soft energy transfers
 - Total XS for discrete \boxed{X} -electron production above T_{cut}

$$\frac{dE(E, T_{cut})}{dx} = n_{at} \int_{0}^{T_{cut}} T \frac{d\sigma(Z, E, T)}{dT} dT$$
$$\sigma(Z, E, T_{cut}) = \int_{T_{cut}}^{T_{max}} \frac{d\sigma(Z, E, T)}{dT} dT$$

- At each step energy deposition is sampled by a fluctuation model using the computed mean energy loss
- Optionally, energy loss may be modified :
 - for the generation of extra 🔣-electrons under the threshold when the track is in the vicinity of a geometrical boundary (sub-cutoff)
 - for the sampling of fluorescence and Auger–electrons emission
- 4-momentum balance is provided in all cases

Effect of production thresholds

500 MeV incident protons on EM Pb/LAr calorimeter

In Geant4

In Geant3

One sets the production threshold for delta rays as a <u>unique range</u>: <u>1.5 mm</u>

It is converted by Geant4 to energy:

 T_c = 455 keV electron energy in liquid Ar T_c = 2 MeV electron energy in Pb

one has to set the cut for delta-rays (DCUTE) as an <u>energy threshold</u>

either to the Liquid Argon value, thus producing many small unnecessary drays in Pb,

or to the Pb value, thus killing the d-rays production everywhere

What particles have cuts?

Since Geant4 9.3 cuts are defined for

- Gamma
- Electron
- Positron
- Proton

 Cut for proton is used for all hadrons and ions by elastic scattering processes

Which processes use cuts ?

It is not mandatory to use cuts

- Energy thresholds for gamma are used in Bremsstrahlung
- Energy thresholds for electrons are used in ionisation and e+epair production processes
- Energy threshold for positrons is used in the e+e- pair production process
- Energy thresholds for gamma and electrons are used optionally ("ApplyCuts" options) in all discrete processes
 - Photoelectric effect, Compton, gamma conversion
- Energy threshold for protons are used in processes of elastic scattering for hadrons and ions defining the threshold for kinetic energy of nuclear recoil

- Range cut approach was established for simulation of energy deposition inside solid or liquid media
 - Sampling and crystal calorimeters
 - Silicon tracking
- For specific user application, it may be revised, for example, by defining different cuts in range for electron and gamma
 - Gaseous detectors
 - Muon system
- Tracking cuts may be also used (saving some CPU) for simulation of penetration via shielding or for simulation in non-sensitive part of the apparatus
 - Astrophysics applications

How to define cut?

• Using UI interface to geant4 kernel:

- /run/setCut 0.1 mm
- /run/setCutForAGivenParticle e- 10 um
- Implementing virtual method SetCuts() of G4VUserPhysicsList
- In Geant4 examples several different implementations of cut definition in user code are shown
 - Including user defined UI commands
 - \$G4INSTALL/examples/extended/electromagnetic

Cuts per G4Region

- Uniform cut in range providing balanced simulation of particle transport in media with different density
 Requirements for precision in different part of complex geometry may be very
 - different
 - Micron precision in tracking devices millimeter precision in calorimeters
 - Unique value of the cut in range may be not effective and not practical

Cuts per G4Region

- Geometrical volumes may be assigned to G4Region
- By default the only one G4Region is created associated with the World volume
 If more than one G4Region is created it is possible to have different cut values

How to define cut for G4Region?

• Using UI interface to geant4 kernel:

- /run/setCutForRegion VertexDetector 1 um
- Implementing virtual method SetCuts() of G4VUserPhysicsList

• Examples are available:

- \$G4INSTALL/examples/extended/electromagnetic
- TestEm8 simple gaseous detector
- TestEm9 more complicate setup with tracker and muon detectors
- To printout cut values and production thresholds use UI command:
 - /run/particle/dumpCutValues

Thank you for your attention!

