Normalisation modelling sources

Geant4 tutorial Paris, 4-8 June 2007

Giovanni Santin ESA / ESTEC

Rhea System SA

Outline

- What / why ? Me?
- General concept
- Applied to specific domains
 - Accelerator
 - Space
- References

What / why ? Me ?

Yes!

- Almost all MC studies require this step
- During simulation or, more likely, at post processing
- Absolute / relative values?
 - Whenever absolute \rightarrow normalisation needed
- Method depends on
 - Source geometrical configuration &
 - Choices made in modelling the source

General concept

Given a simulation quantitative result X_s (e.g. dose in a volume), the value expected in the real world X_r is obtained with a "rescaling"

N_s : # simulated events N_r : # real events expected

- N_s is set by the user
 - Decision based on (statistical) error on estimates
- N_r depends on the real source
 - The source component which is modelled in the simulation world

Example 1 Beam irradiation

- Irradiation of shielded planar Si detector
- Parallel beam source, protons
- Final expected simulation results:
 - Average proton energy at Si
 - Total dose
 - Spectrum of event energy deposit

A

Si

GPS source description

/gps/particle proton

/gps/ene/type Gauss /gps/ene/mono 400 MeV /gps/ene/sigma 50. MeV

/gps/ang/type cos
/gps/ang/type beam1d
/gps/ang/sigma r 5. deg

/gps/pos/type Beam

/gps/pos/shape Circle
/gps/pos/centre 0. 0. 0. mm
/gps/pos/radius 3. mm
/gps/pos/sigma r .2 mm

Example 1 Normalisation

- Ns is set by the user e.g. Ns = 1.0E+05
- Nr is known
 - e.g. Nr = 1.3E+11
 - Directly from beam monitor
 - Assuming beam profile fully contained in the geometry (if not → integrate flux over the SV surface)

Simulation results:

- Sum of proton energies
- Total energy deposit
- Histogram of event energy deposit

Normalised results:

 Average proton energy at Si (not a real normalisation) Si

dE

A

Epi

- Total dose
- Spectrum of event energy deposit

Example 2 Diffuse radiation in space

- Irradiation of satellite in space
- Isotropic source, electrons
- Final expected results:
 - Total dose

GPS source description

/gps/particle e-

/gps/ene/min 0.05 MeV /gps/ene/max 1000 MeV /gps/hist/point 0.05 0 /gps/hist/point 0.1 2100000000 /gps/hist/point 0.2 695000000 /gps/hist/point 0.3 372000000 /gps/hist/point 0.5 175000000 /gps/hist/point 1 60800000 /gps/hist/point 2 16300000 /gps/hist/point 3 6640000 /gps/hist/point 5 2030000 /gps/hist/point 10 383000 /gps/hist/inter Lin

/gps/pos/type Surface
/gps/pos/shape Sphere
/gps/pos/centre 0. 0. 0. cm
/gps/pos/radius 2.5 m

/gps/ang/type cos

Giovanni Santin - Normalisation - Geant4 tutorial, Paris 2007

Isotropic radiation in space Cosine VS Isotropic ? I. Slab source

- If one shoots an isotropic flux from a slab the final distribution in space is not isotropic !
 - Different fluences through surfaces at different angles

Objective:

model an isotropic flux in space, shooting from a planar surface (assuming flux from right is stopped)

By definition of isotropic flux:

→ The flux passing through a surface (such as A) is not dependent on the direction

- The slab B sees
 - Full flux for a direction normal to its surface
 - reduced by a factor cos(q) for tilted directions (/cm² !)
- \rightarrow We must use "cosine-law" angular distribution when shooting primaries from the slab

Giovanni Santin - Normalisation - Geant4 tutorial, Paris 2007

Isotropic radiation in space Cosine VS Isotropic ? II. Sphere source

- Same is valid for a spherical surface
 - the fluence for each direction is proportional to the cosine of the angle between the source direction and the local normal to the sphere surface
- Cosine-law angular emission actually works not only for the sphere, but for generic surfaces (e.g. shooting from a box)
- Isotropic angular emission from the surface leads to non isotropic fluence in the volume
 - E.g. for each emission direction the final distribution is not flat on a plane normal to the emission direction
- One can verify the various options by placing an oriented detector in different positions/ orientations in the volume

Example 2: Normalisation

- N_r is the number of particles traversing my source volume in the real world
- N_r depends on the external flux, integrated on relevant source surface and solid angle
 - Only the source geometry is relevant for source normalisation, no detector parameter
- $F \rightarrow$ external flux (energy integrated) [/ cm² s sr]

Two possible approaches

- Method 1
 - Integrate over the 2 p emission angle, →
 with cosine-law biasing
 - Then integrate over the source sphere surface: S = 4p R²
- Method 2 (euristic)
 - Assume isotropic source in space → (no cosine-law)
 - Take only sphere equatorial surface as effective geometrical cross section: S = p R²

Sphere case: limiting the emission angle

- Modelling isotropic sources in space, one may want to limit the max emission angle to q<q_{max} (source biasing)
 - Method 1: $N_r = F$ ($p \sin^2 q_{max}$) (4p R²) = F 4 p² R² $\sin^2 q_{max}$
 - Method 2: $N_r = F$ (4p) s = F 4p (pr²) = F 4 p² R² sin²q_{max}
- In case $q_{min} < q < q_{max} \rightarrow N_r = F 4 p^2 R^2 (sin^2 q_{max} sin^2 q_{min})$
- The effect is like a reduction of the effective relevant cross-section surface

Summary

- Number of simulation events does not have to match the number of particles in the real world
 - N_s driven by statistical error on estimates
 - Final results are then normalised
- Given a simulation quantitative result D_s (e.g. Dose in a volume), the real value expected in space D_r is generally obtained with the rescaling D_r = D_s (N_r / N_s)
- N_r depends on the external flux, integrated on relevant surface and solid angle and depends on
 - Source geometrical configuration &
 - Choices made in modelling the source

Useful references

J.D. Sullivan, NIM 95 (1971) 5-11

NUCLEAR INSTRUMENTS AND METHODS 95 (1971) 5-11; © NORTH-HOLLAND PUBLISHING CO. GEOMETRICAL FACTOR AND DIRECTIONAL RESPONSE OF SINGLE AND MULTI-ELEMENT PARTICLE TELESCOPES* J. D. SULLIVAN[†] Enrico Fermi Institute and Dept. of Physics, The University of Chicago, Chicago, Illinois 60637, U.S.A.

- CREME 86 manual
- PDG (full version) on Cosmic-Ray

