
PHYSICS 1 
Presented by Sébastien Incerti (CNRS/IN2P3) 
Based on slides kindly prepared by Dennis Wright (SLAC) 

Geant4 9.4 1 



Outline 

¨  Introduction 
¤ What is a physics list and why do we need one ? 

¨  The G4VUserPhysicsList class 
¤ What you need to begin 

¨  Modular physics lists 
¤ A more sophisticated way to go 

¨  Pre-packaged physics lists 

2 



What is a Physics List ? 

¨  A class which collects all the particles, physics processes and production 
thresholds needed for your application 

¨  It tells the run manager how and when to invoke physics 

¨  It is a very flexible way to build a physics environment 
¤  user can pick the particles he wants 
¤  user can pick the physics to assign to each particle 

¨  But, user must have a good understanding of the physics required 
¤  omission of particles or physics could cause errors or poor simulation 

3 



Introduction 4 



Why Do We Need a Physics List ? 

¨  Physics is physics – shouldn't Geant4 provide, as a 
default, a complete set of physics that everyone can 
use ? 

¨  NO 
¤  there are many different physics models and 

approximations 
n  very much the case for hadronic physics 
n  but also the case for electromagnetic physics 

¤  computation speed is an issue 
n  a user may want a less-detailed, but faster approximation 

¤  no application requires all the physics and particles Geant4 
has to offer 
n  e.g., most medical applications do not want multi-GeV physics 

5 



Why Do We Need a Physics List ? 

¨  For this reason Geant4 takes an atomistic, rather than 
an integral approach to physics 
¤  provide many physics components (processes) which are 

decoupled from one another 
¤  user selects these components in custom-designed physics lists 

in much the same way as a detector geometry is built 

¨  Exceptions 
¤  a few electromagnetic processes must be used together 
¤  future processes involving interference of electromagnetic 

and strong interactions may require coupling as well 

6 



Physics Processes Provided by Geant4 

¨  EM physics 
¤  “standard” processes valid from ~ 1 keV to ~ PeV 
¤  “low-energy” valid from 250 eV to ~ PeV 
¤  optical photons 

¨  Weak physics 
¤  decay of subatomic particles 
¤  radioactive decay of nuclei 

¨  Hadronic physics 
¤  pure hadronic processes valid from 0 to ~TeV 
¤  electro- and gamma-nuclear valid from 10 MeV to ~TeV 

¨  Parameterized or “fast simulation” physics 

7 



G4VUserPhysicsList 

¨  All physics lists must derive from this class  
¤  and then be registered with the run manager 

¨  In our example: 
class BeamTestPhysicsList: public G4VUserPhysicsList 
{ 
  public: 
    BeamTestPhysicsList(); 
    ~BeamTestPhysicsList(); 
    void ConstructParticle(); 
    void ConstructProcess(); 
    void SetCuts(); 
} 

¨  User must implement the methods ConstructParticle and 
ConstructProcess, and optionally SetCuts 

8 



G4VUserPhysicsList 9 



G4VUserPhysicsList: Required Methods 

¨  ConstructParticle() : choose the particles you need in your 
simulation and define all of them here 

¨  ConstructProcess(): for each particle, assign all the physics 
processes important in your simulation 
¤  What's a process ? 
¤  a class that defines how a particle should interact with matter  

(it's where the physics is!) 
¤  more on this later 

¨  SetCuts() : set the range cuts for secondary production 
¤  What's a range cut ? 
¤  essentially a low energy limit on particle production 
¤  more on this later 
¤  optional 

10 



1) ConstructParticle() 

void BeamTestPhysicsList::ConstructParticle() 

{ 

 

G4BaryonConstructor* baryonConstructor = new G4BaryonConstructor(); 

baryonConstructor->ConstructParticle(); 

delete baryonConstructor; 

 

G4BosonConstructor* bosonConstructor = new G4BosonConstructor(); 

bosonConstructor->ConstructParticle(); 

delete bosonConstructor; 

.... 

.... 

} 

11 



ConstructParticle() – alternate – 

void BeamTestPhysicsList::ConstructParticle() 

{ 

 

G4Electron::ElectronDefinition(); 

G4Proton::ProtonDefinition(); 

G4Neutron::NeutronDefinition(); 

G4Gamma::GammaDefinition(); 

.... 

.... 

} 

12 



2) ConstructProcess() 

void BeamTestPhysicsList::ConstructProcess() 
{ 
AddTransportation(); 
// method provided by G4VUserPhysicsList 
// assigned transportation process to all particles 
// defined in ConstructParticle() 
 
ConstructEM(); 
// method may be defined by user (for convenience) 
// put electromagnetic physics here 
 
ConstructGeneral(); 
// method may be defined by user (for convenience) 
} 

13 



ConstructEM() 

void BeamTestPhysicsList::ConstructEM() 

{ 

theParticleIterator->reset(); 

 

while( (*theParticleIterator)() )  

{ 

 G4ParticleDefinition* particle =theParticleIterator->value(); 

 G4ProcessManager* pmanager =particle->GetProcessManager(); 

 G4String particleName = particle->GetParticleName(); 

  

 if (particleName == “gamma”) { 

  pmanager->AddDiscreteProcess(new G4GammaConversion()); 

... 

} 

..... 

14 



ConstructGeneral() 

void BeamTestPhysicsList::ConstructGeneral() 

{ 

// Add decay process 

G4Decay* theDecayProcess = new G4Decay(); 

 

theParticleIterator->reset(); 

while( (*theParticleIterator)() )  

  { 

 G4ParticleDefinition* particle = theParticleIterator->value(); 

 G4ProcessManager* pmanager = particle->GetProcessManager(); 

 if (theDecayProcess->IsApplicable(*particle) )  

 { 

  pmanager->AddProcess(theDecayProcess); 

  pmanager->SetProcessOrdering(theDecayProcess,idxPostStep); 

  pmanager->SetProcessOrdering(theDecayProcess,idxAtRest);  

 }  

  }  

} 

15 



3) SetCuts() – optional – 

void BeamTestPhysicsList::SetCuts() 

{ 

 defaultCutValue = 1.0*mm; 

 SetCutValue(defaultCutValue, “gamma”); 

 SetCutValue(defaultCutValue, “e-”); 

 SetCutValue(defaultCutValue, “e+”); 

 // 

 // These are all the production cut values you need to set 

 // not required for any other particle 

} 

16 



Modular Physics list 17 



G4VModularPhysicsList 

¨  The physics list in our example is relatively simple 

¨  A realistic physics list is likely to have many more physics processes 
¤  such a list can become quite long, complicated and hard to maintain 
¤  try a modular physics list instead 

¨  Features of G4VModularPhysicsList 
¤  derived from G4VUserPhysicsList 
¤  AddTransportation() automatically called for all registered 

particles 
¤  Allows you to define “physics modules”: EM physics, hadronic physics, 

optical physics, etc. 

18 



A Simple G4VModularPhysicsList 

¨  Constructor: 
MyModPhysList::MyModPhysList(): G4VModularPhysicsList() 

{ 

defaultCutValue = 1.0*mm; 

 

RegisterPhysics( new ProtonPhysics() ); 

// all physics processes having to do with protons 

 

RegisterPhysics( new ElectronPhysics() ); 

// all physics processes having to do with electrons 

 

RegisterPhysics( new DecayPhysics() ); 

// physics of unstable particles 

} 

 

¨  Set Cuts: 
void MyModPhysList::SetCuts() 

{ SetCutsWithDefault() ; } 

19 



Usage of Physics Constructors 

¨  Allows you to group particle and process construction according to physics 
domains 

class ProtonPhysics : public G4VPhysicsConstructor 

{ 

  public: 

 ProtonPhysics(const G4String& name = “proton”); 

 virtual ~ProtonPhysics(); 

 

 virtual void ConstructParticle(); 

 // easy – only one particle to build in this case 

 

 virtual void ConstructProcess(); 

 // put here all the processes a proton can have 

} 

¨  We will see Physics Constructor examples soon 
 

20 



Pre-packaged Physics lists 21 



Pre-packaged Physics Lists (1) 

¨  Our example deals mainly with electromagnetic physics 
¨  A complete and realistic EM physics list can be found in 

novice example N03 
¤  good starting point 
¤  add to it according to your needs 

¨  Adding hadronic physics is more involved 
¤  for any one hadronic process, user may choose from several 

hadronic models 
¤  choosing the right models for your application requires care 
¤  to make things easier, pre-packaged physics lists  

(also called « reference » physics lists) are now provided 
according to some reference use cases 

22 



Pre-packaged Physics Lists (2) 

¨  Each pre-packaged (or reference) physics list includes different 
choices of EM and hadronic physics, but the EM part derives mainly 
from the electromagnetic physics of example N03 

¨  These can be found on the Geant4 web page at :  
http://geant4.cern.ch/support/proc_mod_catalog/physics_lists/
physicsLists.shtml 

¨  Caveats 
¤  these lists are provided as a “best guess” of the physics needed in a 

given case 
¤  the user is responsible for validating the physics for his own application 

and adding (or subtracting) the appropriate physics 
¤  they are intended as starting points or templates 

23 



Physics Lists web page 
24 

http://geant4.cern.ch/support/proc_mod_catalog/physics_lists/physicsLists.shtml 



Summary 

¨  All the particles, physics processes, and production cuts needed for an 
application must go into a physics list 

¨  Two kinds of physics list classes are available for users to derive from 
¤  G4VUserPhysicsList – for relatively simple physics lists 
¤  G4VModularPhysicsList – for detailed physics lists 

¨  Some pre-packaged physics lists are provided by Geant4 as starting points 
for users 
¤  electromagnetic physics lists 
¤  electromagnetic + hadronic physics lists 

¨  Care is required by user in choosing the right physics to use 

25 



Thank you for your attention 26 


