PHYSICS OVERVIEW AND PROCESSES

1

From slides by Dennis Wright (SLAC) and by Sebastien Incerti (CNRS/IN2P3)

Outline

2

Physics Overview

the physics Geant4 has to offer

Processes

how they work

example processes

Production thresholds

Geant4 physics

- Geant4 provides a wide variety of physics components for use in simulation
- Physics components are coded as processes
 - a process is a class which tells a particle how to interact
 - user may write his own processes
 - derived from Geant4 process
- Processes are grouped into
 - electromagnetic, hadronic, and decay categories

Geant4 Physics: Electromagnetic

standard – complete set of processes covering charged particles and gammas energy range 1 keV to ~PeV low energy – specialized routines for e-, gammas, charged hadrons more atomic shell structure details some processes valid down to 250 eV or below others not valid above a few GeV \Box optical photon – only for long wavelength photons (xrays, UV, visible) processes for reflection/refraction, absorption, wavelength shifting, Rayleigh scattering

Geant4 Physics: Hadronic

- □ Pure hadronic (0 ~TeV)
 - Elastic
 - Inelastic
 - Capture
 - Fission
- □ Radioactive decay
 - at-rest and in-flight
- □ Photo-nuclear (~10 MeV ~TeV)
- □ Lepto-nuclear (~10 MeV ~TeV)
 - e+, e- nuclear reactions
 - muon-nuclear reactions

Geant4 Physics: decay and parameterized

7

Decay processes include

- weak decay (leptonic decays, semi-leptonic decays, radioactive decay of nuclei)
- **□** electromagnetic decay (π^0 , Σ^0 , etc. decay)
- strong decays not included here
 - they are part of hadronic models
- Parameterized processes
 - electromagnetic showers are propagated according to parameters averaged over many events
 - faster than detailed shower simulation

Physics processes (1)

- 9
- All the work of particle decays and interactions is done by processes
 - transportation is also handled by a process
- □ A process does two things:
 - decides when and where an interaction will occur
 - method: GetPhysicalInteractionLength()
 - this requires a cross section, decay lifetime
 - for the transportation process, the distance to the nearest object along the track is required
 - generates the final state of the interaction (changes momentum, generates secondaries, etc.)
 - method: Dolt()
 - this requires a model of the physics

Physics processes (2)

- □ There are three flavors of processes:
 - $\blacksquare well-located in space \rightarrow PostStep$
 - $\blacksquare distributed in space \rightarrow AlongStep$
 - \square well-located in time \rightarrow AtRest
- A process may be a combination of all three of the above
 - in that case six methods must be implemented (GetPhysicalInteractionLength() and Dolt() for each action)
- "Shortcut" processes are defined which invoke only one
 Discrete process (has only PostStep physics)
 - Continuous process (has only AlongStep physics)
 - AtRest process (has only AtRest physics)

Example processes (1)

- Discrete process: Compton Scattering
 - step determined by cross section, interaction at end of step
 - PostStepGPIL()
 - PostStepDolt()
- Continuous process: Cerenkov effect
 - photons created along step, # roughly proportional to step length
 - AlongStepGPIL()
 - AlongStepDolt()
- □ At rest process: positron annihilation at rest
 - no displacement, time is the relevant variable
 - AtRestGPIL()
 - AtRestDolt()

□ These are examples of so-called "pure" processes

Example processes (2)

- □ Continuous + discrete: ionization
 - energy loss is continuous
 - Moller/Bhabha scattering and knock-on electrons are discrete
- Continuous + discrete: bremsstrahlung
 - energy loss due to soft photons is continuous
 - hard photon emission is discrete
- In both cases, the production threshold separates the continuous and discrete parts of the process
 - more on this later
- Multiple scattering is also continuous + discrete

Handling multiple processes

- Many processes (and therefore many interactions) can be assigned to the same particle
- How does Geant4 decide which interaction happens at any one time?
 - interaction length or decay length is sampled from each process
 - shortest one happens, unless
 - a volume boundary is encountered in less than the sampled length. Then no physics interaction occurs (just simple transport).
 - the processes that were not chosen have their interaction lengths shortened by the distance travelled in the previous step
 - repeat the procedure

Handling multiple processes

Interaction length sampling

- At the beginning of the first step, the interaction length is found
 - from the cross section and target number density:
 - **\square** sampling is done from the distribution $e^{-\sigma \rho L}$

this is done for each process assigned to the particle, so we now have several different lengths, plus the distance to the next volume boundary

Which process occurs ?

- 16
- For the simple case of a gamma with Compton scattering and pair production assigned, the sampled lengths will be:
 typically short for Compton scattering (large cross section)
 typically long for pair production (small cross section)
- The process with the shortest sampled length is always chosen to occur
 - this process defines the length of the first step
- □ After the process occurs, we're ready for the next step
 - the process which has just occurred must be re-sampled
 - the processes which did not occur (pair production) are not resampled and must have the previous step length subtracted from their originally sampled lengths

Which process occurs ?

• Step 1: - all lengths sampled В - Compton occurs • Step 2: - Compton re-sampled - boundary is crossed • Step 3: - Compton occurs again - new boundary found • Step 4: - Compton re-sampled pair production occurs +

Example Event with Standard EM Processes Turned On

- 50 MeV e- entering LAr-Pb calorimeter
- Processes used
 - bremsstrahlung
 - ionization
 - multiple scattering
 - positron annihilation
 - pair production
 - Compton scattering

¹⁹ Production threshold

- Every simulation developer must answer the question: how low in energy can you go?
 - at what energy do I stop tracking particles ?
- □ This is a balancing act
 - need to go low enough to get the physics you're interested in
 - can't go too low because some \$\u03c6 processes have infrared divergences causing CPU time to explode
 - eg. Bremsstrahlung, delta-rays production
- The traditional Monte Carlo solution is to impose an absolute cutoff in energy (eg. Geant3)
 - particles are stopped when this energy is reached
 - remaining energy is dumped at that point

- But, such an absolute cut-off in <u>energy</u> may cause imprecise stopping location and deposition of energy
- □ There is also a particle dependence
 - the range of 10 keV gammas in Si is a few cm
 - □ different from the range of 10 keV e- in Si which is a few microns
- □ And a material dependence, eg sampling calorimeter:
 - suppose you have a detector made of alternating sheets of Pb and plastic scintillator
 - you set cut-off for Pb, it will likely be wrong for scintillator which does the actual energy deposition measurement
 - you set cut-off for scintillator, Geant4 will spend excessive time tracking shower particles in Pb

- □ In Geant4 there are no tracking cuts
 - particles are tracked down to a zero range/kinetic energy
- Only production thresholds exist
 - i.e. cuts allowing a particle to be created or not
- □ Why are such cuts needed ?
 - Some electromagnetic processes involve infrared divergences
 - this leads to a huge number of smaller and smaller energy photons/ electrons (such as in Bremsstrahlung, δ-ray production)
 - production cuts limit this production to particles above the threshold only
 - the remaining, divergent part, is treated as a continuous effect (i.e. AlongStep action)

- □ Geant4 solution: impose a <u>cut in range</u>
 - default value is 1 mm, you can set yours in your PhysicsList
 - the primary particle loses energy by producing secondary electrons or gammas
 - if the primary no longer has enough energy to produce secondaries which travel at least this cut in range (1 mm), two things happen:
 - the discrete energy loss ceases: no more secondaries are produced
 - the primary is tracked down to zero energy using continuous energy loss
- Stopping location is therefore correct
- Only one value of cut in range is needed for all materials because it corresponds to different production thresholds in energy (depending on material).

Summary

- Geant4 supplies many physics processes which cover electromagnetic, hadronic and decay physics
- Processes are organized according to when they are used during the tracking of a particle (discrete, continuous, at-rest, etc.)
- Many processes may be assigned to one particle
 which one occurs first depends on cross sections, lifetimes, and distances to volume boundaries

²⁵ Thank you for your attention