
1

stim_pixe_tomography

Geant4 advanced example for tomography imaging

User’s Guide

Please cite the following paper:

 Michelet C, Li Z, Jalenques H, Incerti S, Barberet P, Devès G, et al. A Geant4

simulation of X-ray emission for three-dimensional proton imaging of microscopic

samples. Phys Med. 2022;94:85-93. https://doi.org/10.1016/j.ejmp.2021.12.002.

2

3

Table of contents

1. Getting Started ... 5

1.1. Introduction to STIM and PIXE tomography ... 5

1.2. General introduction to stim_pixe_tomography example ... 6

1.3. Installation of stim_pixe_tomography example .. 7

2. Execution of a simulation .. 9

2.1. Description of a simulation .. 9

2.1.1. Positions of the source at first projection .. 9

2.1.2. Rotation of the source .. 10

2.1.3. Output file(s) of a STIM-T or PIXE-T simulation .. 10

2.2. Construction of phantoms .. 11

2.3. Configuration of beam scan using GPSPointLoop.C ... 13

2.4. Setting production cut .. 15

2.4.1. Range cut ... 15

2.4.2. Lowest energy cut ... 15

2.4.3. Final set of the cut ... 15

2.4.4. UI commands related to cut ... 16

2.5. Detection of protons for STIM-T ... 16

2.6. Detection of X-rays for PIXE-T ... 17

2.7. An example of pixe3d.mac ... 19

2.8. Execution of a simulation ... 20

2.9. Visualization of phantoms .. 20

2.10. Format of simulation output files ... 22

3. Selection of particles of interest .. 25

3.1. Parameters of selection ... 25

3.2. Principle of selection .. 27

4

3.3. Selection with particle momentum ... 27

3.4. Selection with particle position and momentum .. 28

3.5. Implementation of selection scripts .. 30

3.5.1. Selection procedure using particle momentum ... 30

3.5.2. Selection procedure using particle momentum and position ... 31

3.5.3. Execution of the scritps ... 32

3.6. Format of files for tomographic reconstruction .. 32

4. Interruption of a simulation ... 35

5. Multithreading ... 37

6. Simulation keeping a constant energy for the protons .. 39

7. Visualization of spectrum of X-rays and protons .. 41

7.1. Spectrum from simulation results ... 41

7.2. Spectrum from input of tomographic reconstruction ... 41

8. Potential use for other applications ... 45

9. List of scripts in the example .. 47

References ... 49

5

1. Getting Started

The stim_pixe_tomography example is based on the Monte Carlo simulation code Geant4. It has been

developed at Laboratoire de Physique des 2 Infinis Bordeaux (LP2I - CENBG). This user guide is

dedicated to:

 introduce some basic knowledge of Geant4 to beginners

 guide the user to model a 3D tomography experiment: STIM-T or PIXE-T using the

stim_pixe_tomography example.

1.1. Introduction to STIM and PIXE tomography

Proton microbeams of a few MeV are widely used for the imaging and quantitative analysis of

microscopic samples of a few ten or hundred micrometers in size, with a wide field of applications.

Scanning Transmission Ion Microscopy tomography (STIM-T) and Particle-Induced X-ray Emission

tomography (PIXE-T) are techniques to determine the three-dimensional content of microscopic

samples [1]. STIM-T aims to determine the density of analyzed sample, PIXE-T to reveal the chemical

content (in g/cm3). In the experiment, the incident proton beam scans over the area of interest at a certain

angle/projection, and then the sample is rotated to perform the scan for the next projection. The

difference between STIM-T and PIXE-T consists of three aspects:

 STIM-T aims to detect transmitted protons, while PIXE-T deals with emitted X-rays

 The detector for STIM-T is always placed in front of the proton source (at 0°), which is not the

case for PIXE-T. For example, the detector can be placed at 135° relative to the direction of

incident protons) (Figure 1b).

 The number of protons required for STIM-T is small, usually 20 or 100 protons at each position

of beam [2]. For PIXE-T, a higher number of protons (about 108 to 109) is needed in experiments.

While in simulation, 106 protons can be used for each position of the beam [3].

6

Figure 1. Experimental set-up for STIM-T (a) and PIXE-T (b).

1.2. General introduction to stim_pixe_tomography example

The stim_pixe_tomography advanced example is an open source application, provided as an advanced

example in the GEANT4 toolkit. It is based on the TestEm5 example, dedicated to study the interaction

of particles going through a simple material. The stim_pixe_tomography is developed for 3D imaging

purpose, more precisely for STIM-T and PIXE-T simulation. STIM-T and PIXE-T simulation will

generate data file(s) containing all the information, i.e. the energy and direction (momentum) of

interested particles. The particles (protons or X-rays) are collected in 4π solid angle, and will be sorted

by the user after the simulation in order to model a specific detection setup. The sorted events are

ultimately used for tomographic reconstruction. At LP2IB (CENBG), a data reduction software package

suited to STIM-T and PIXE-T is developed, TomoRebuild [4]. The simulated data generated by the

stim_pixe_tomography code are processed in the same way as “real” experimental data, in order to

obtain reconstructed images. The final reconstructed image for STIM-T is the distribution of mass

density (expressed in g/cm3). For PIXE-T, it is the distribution of the mass density of each considered

chemical element.

Note that stim_pixe_tomography can be also used for other applications, such as classical (2D) imaging.

Moreover, the type of incident particle can be changed, like X-rays or ion beam. It will be discussed in

section 8.

Proton beam

x

y
z

Sample
STIM

detector
Proton beam

O

B

A

(a)

Sample

PIXE detector

45°
O

B

(b)

A

7

1.3. Installation of stim_pixe_tomography example

To use the stim_pixe_tomography example, the user has to install Geant4 first. The Geant4 code is

available from Geant4 website: https://geant4.web.cern.ch/. A complete virtual machine is provided by

LP2I Bordeax (CENBG): https://geant4.cenbg.in2p3.fr/.

Once Geant4 is installed, the stim_pixe_tomography example will be found under: /your-G4-

install/share/your-G4-version/examples/advanced/stim_pixe_tomography. The compilation of the

stim_pixe_tomography example requires Geant4 libraries and headers. For this reason, the user needs

to configure it by the following commands, in order to be able to use Geant4 tools (from the directory

where Geant4 is installed). We assume that Geant4 is installed under /your-G4-install, and

stim_pixe_tomography example under /home/you/stim_pixe_tomography

cd stim_pixe_tomography // enter in stim_pixe_tomography example

mkdir build // create a build directory in stim_pixe_tomography example

cd build // enter in build directory

cmake -DGeant4_DIR=/your-G4-install/lib64/your-G4-version /home/you/stim_pixe_tomography

 // run CMake to generate the Makefile needed to build the application

make // build the executable

./stim_pixe_tomography -s pixe3d.mac // run a simulation for STIM-T, the argument “-s” is

 //necessary, otherwise an error will occur

Similarly, for PIXE-T, run as follows:

./stim_pixe_tomography -p pixe3d.mac // run a simulation for PIXE-T, the argument “-p” is

//necessary, otherwise an error will occur.

// After correct configuration, the following lines will appear on the screen:

-- Configuring done

-- Generating done

-- Build files have been written to: …/stim_pixe_tomography/build

Note that if you use the virtual machine provided by LP2I (CENBG), it is recommended to create an

alias cmk for replacing the CMake command above. The alias cmk is created in .ucshrc file by following

command:

alias cmk "cmake -DGeant4_DIR=$G4COMP .."

So, from the build directory, to generate the makefile, you just need to type cmk before make.

https://geant4.web.cern.ch/
https://geant4.cenbg.in2p3.fr/

8

9

2. Execution of a simulation

2.1. Description of a simulation

2.1.1. Positions of the source at first projection

First of all, the execution of stim_pixe_tomography example for STIM-T or PIXE-T is composed of a

series of runs. A run corresponds to the simulation in which the proton beam is place at a certain position.

Figure 2 shows the layout of a simulation of STIM-T or PIXE-Tat the first projection (i.e. projection

index = 0, projection angle = 0° relative to the source direction). The object is here represented by a

sphere in the middle. The scan is shown as the green cube surrounding the sample. The red points

represent the positions of the source when scanning the sample, which are indexed relative to the YZ

coordinate system. At the first projection, the source is directed along the positive x-axis. The

tomographic slices are horizontal (in x-y plane). The Y index indicates the position of the source within

the horizontal slice. The Z index indicates the position of the slice vertically.

Figure 2. Layout of a simulation of STIM-T or PIXE-T at first projection (projection index = 0).

Figure 3 shows an example of the positions of the source. This example considers: number of pixels =

10 (horizontal scan), number of slices = 10 (vertical scan). The scan starts from the position indices

(Y=0, Z=0). The beam source horizontally moves from Y = 0 to 9. Then it switches to the next slice,

until the last position (Y=9, Z=9). The number of pixels in the Y direction defines the final number

voxels in the reconstructed tomographic slice. Here it is 10 × 10 voxels for each reconstructed slice.

Y

Z

z

x

x

y

O

First projection
Projection index = 0

Protons

10

Figure 3. Positions of the beam at a given projection for a scan composed of 10 slices of 10 pixels.

2.1.2. Rotation of the source

When the source finishes the scan at the first projection, the source rotates through a certain angle (step

angle) counterclockwise as Figure 4 shows. The scan described above is then repeated at this projection.

Then the source rotates again and the scan is performed again, and so on until the last projection.

Figure 4. Rotation of the source at projection index = 1.

2.1.3. Output file(s) of a STIM-T or PIXE-T simulation

At the end of a simulation, output file(s) containing information of particles of interest are generated.

For STIM-T, a file is generated containing the residual energy and momentum of transmitted protons

getting out of the object.

 Z (index of slice)

1 horizontal line ↔ 1 slice

Y (index of pixel)

0 1 2 3 4 5 6 7 8 9

9

8

 7

 6

 5

 4

 3

 2

 1

 0

x

y

θ

z

11

For PIXE-T, twos files are generated:

 One contains the energy and momentum of emitted X-rays (secondary) at creation, i.e. at the

point when they are generated.

 The other contains the energy and momentum of emitted X-rays (secondary) at exit, i.e. when

getting out of the object.

More details about the output file(s) can be found in sections 2.5, 2.6 and 2.10.

2.2. Construction of phantoms

According to the basic rules of Geant4, the construction of objects is implemented in the

DetectorConstruction.cc/.hh codes, particularly, in the DetectorConstruction::Construct() method. In

the example, three built-in phantoms are available. Users can choose the phantom by specifying the

value of phantom_type (Figure 5):

 phantom_type = 1, a cube of 40*40*40 µm3 is constructed by

DetectorConstruction::Construct_Phantom1(). The cube is of uniform density and

composition. In the present example, the material is the same as the “Body” part of C. elegans

phantom. Obviously, the material composition and density, as well as the size of the cube, can

be easily modified by the user (Figure 6). Regarding materials, necessary materials that are used

in the phantoms are defined in the DetectorConstruction::DefineMaterials() method.

 phantom_type = 2, the upper part of C. elegans worm (Figure 7) is constructed by

DetectorConstruction::Construct_Phantom2(). The shape and size are derived from

experimental data of PIXE-T and STIM-T performed at LP2I (CENBG) [2].

 phantom_type = 3, a inertial confinement fusion (ICF) target phantom is constructed by

DetectorConstruction::Construct_Phantom3(), the shape and size are derived from

experimental data of PIXE-T and STIM-T performed at Fudan university [5, 6].

Figure 5. Choice of phantom type in DetectorConstruction.cc

 phantom_type = 1: a cube of 40*40*40 µm3

 phantom_type = 2: C. elegans worm

 phantom_type = 3: ICF target

12

Figure 6. Setting the size and material of the built-in cube phantom

Figure 7. x-z cross sectional view of the upper part of C. elegans

Of course, the user can construct a new phantom according to the needs. In general, an object is made

of three volumes (Figure 8, build-in cube for instance):

 Solid volume, specifying the shape and the size of the phantom

 Logical volume, specifying the composition (materials) of the solid volume you built

 Physical volume, specifying position and rotation of the logical volume

There is a ground rule in Geant4 in terms of building phantoms that all the phantoms should be contained

in an object called “World”. Thus, the user has to build a “World” object in addition to the phantom. In

the stim_pixe_tomography example, the “World” is a cube, whose size is adjusted according to the size

of the phantom that the user builds. Indeed, it is important to check that “World” is geometrically bigger

than the phantom.

13

Figure 8. Definition of Solid, Logical and Physical volumes for the built-in cube phantom.

2.3. Configuration of beam scan using GPSPointLoop.C

The configuration of the beam is performed by using the GPSPointLoop.C script. It reads a predefined

macro pixe3d_initial.mac, which contains the information of physics processes.

GPSPointLoop.C reads pixe3d_initial.mac to generate pixe3d.mac, which contains all the parameters

for the simulation and will be read by Geant4 to run the simulation. In GPSPointLoop.C, the user defines

the following variables (Figure 9), which will automatically generate the successive positions and

directions of the beam written in pixe3d.mac:

 NumberOfProjections: number of projections, for example 100

 NumberOfPixels: number of pixels (in horizontal scan), for example 128

 NumberOfSlices: number of slices, for example 1 for PIXE-T and 128 for STIM-T

 TotalAngleSpan: total angle of the beam scan in degree, for example if TotalAngleSpan = 180

and NumberOfProjections = 100, in this case, the first projection is at 0°, the last is at 178.2°.

 ScanSize: maximal length of scan horizontally; this value should be big enough to ensure that

the phantom can be completely scanned at any angles/projections. Ideally, we take 1.8*maximal

width of the phantom.

The pixel width is equal to ScanSize/NumberOfPixels

 ScanHeight: maximal length of scan vertically.

constructing a solid volume fSolidAbsorber using G4Box, specifying the half length in X, Y, Z

constructing a logical volume fLogicAbsorber using G4LogicalVolume based on the solid volume

fSolidAbsorber, specifying the material fAbsorberMaterial

constructing a physical volume fPhysiAbsorber using G4PVPlacement based on the logical volume

fLogicAbsorber, specifying the position of the phantom, no rotation. In the meantime, the mother

volume should be fLogicWorld

14

The pixel height is equal to ScanHeight/NumberOfSlices

 NbParticles: number of protons of the beam. The same number is taken for each position of the

source beam.

 energy: energy of the proton beam

 typeParticle: type of the particle, for example “proton”

Figure 9. Parameters to define in GPSPointLoop.C

Once the configuration is done, the user runs the following command to generate the pixe3d.mac:

root GPSPointLoop.C

When it comes to the exact position of the beam, one thing should be pointed out. Let’s assume that

NumberOfPixels = 4 in Figure 10, so the scanned area is evenly divided into 4 pixels. The position of

the beam is at the center of the pixel.

Figure 10. Position of the beam for a given horizontal slice xy.

y

x

Protons

First projection
Projection index = 0

One pixel

15

2.4. Setting production cut

The generation of secondary particles follows a general principle in Geant4: a secondary particle is

generated only if its energy is higher than the production cut. The production is set as range cut, which

is converted to energy cut internally for secondary gamma, electron, positron and proton production.

2.4.1. Range cut

A range cut value is set by default to 1 mm for Livermore model; this value can be specified by the

following command, for example 1 nm for microscopic objects:

/run/setCut 1 nm

We should note that a range cut can be set for a given particle type, if the user would like (we have not

done this in pixe3d.mac). Here is an example of setting production cut for gamma if one would like to

do it:

/run/setCutForAGivenParticle gamma 0.5 um

2.4.2. Lowest energy cut

It should be noted that a lowest cut value in energy is specified by default in Geant4. The default lowest

cut value Elow is 990 eV. When the user sets a range cut, if the converted energy cut Ecut corresponding

to the range cut is lower than Elow 990 eV, this cut Ecut will not be valid, because Geant4 takes the highest

of these two energy values. The following command is used to change the lowest energy cut Elow, for

example to 900 eV.

/cuts/setLowEdge 900 eV

2.4.3. Final set of the cut

For PIXE applications, the chemical elements of interest are generally Na and beyond (Z ≥ 11) because

low energy X-rays would not be able to go through the entrance window of conventional detectors. So,

the X-rays that we are interested in have an energy ≥ 1 keV. For this reason, we chose 900 eV as the

minimal energy of X-rays that will be generated. Then, secondary X-rays less than 900 eV are not

generated, that can save a tremendous amount of time.

Since the default lowest energy cut Elow = 990 eV is bigger than 900 eV, thus we have to decrease Elow

by: /cuts/setLowEdge 900 eV

In this case, the range cut must be carefully specified by /run/setCut to make sure that the converted

energy cut Ecut is not bigger than Elow = 900 eV.

 If Ecut> Elow, Geant4 will take Ecut as energy cut

 If Ecut< Elow, Geant4 will take Elow as energy cut

16

 If the /run/setCut is not specified, Geant4 will take the default value 1 mm, and the energy cut

Ecut risks being bigger than 900 eV depending on the material of the sample

Thus in the pixe3d.mac, the following two commands are necessary:

/run/setCut 1 nm

/cuts/setLowEdge 900 eV

2.4.4. UI commands related to cut

Here we give the indication for some UI commands.

 /process/em/deexcitationIgnoreCut: Enable/Disable the usage of production threshold for

fluorescence and Auger electron production. By default, it is false, which means the production

cut is valid. This command is defined in G4EmLowEParametersMessenger.

 /process/em/pixe: Enable/disable PIXE along step deexcitation. By default, it is false, we should

specify true in the simulation. This command is defined in G4EmLowEParametersMessenger.

 /process/em/fluo: Enable/disable atomic deexcitation. This command is defined in

G4EmLowEParametersMessenger.

 /process/em/auger: Enable/disable Auger electrons production. By default, it is false, we should

specify true in the simulation. This command is defined in G4EmLowEParametersMessenger.

 /process/em/augerCascade: Enable/disable simulation of cascade of Auger electrons. By

default, it is false, we should specify true in the simulation. This command is defined in

G4EmLowEParametersMessenger.

 /process/em/fluoBearden: Enable/disable usage of Bearden fluorescence files when modeling

PIXE simulation. By default, it is false, we should specify true in the simulation. This command

is defined in G4EmLowEParametersMessenger.

 /process/em/pixeXSmodel: Set the name of PIXE cross section files used for modeling PIXE

simulation. By default, “Empirical” data are used. “ECPSSR_Analytical” and

“ECPSSR_FormFactor” are available.

 /process/em/applyCuts: Enable/disable applying cuts for discrete processes, like photoelectric

process. By default, it is false. This command is defined in G4EmParametersMessenger.

2.5. Detection of protons for STIM-T

For STIM-T, we collect the energy and momentum of the transmitted protons, after they have gone

through the phantom (at exit). The information is saved in one output file. The info is collected in the

TrackingAction::PostUserTrackingAction() method (Figure 11a). A structure type ParticleInfo is used

to save the energy and momentum of every transmitted proton. This structure is defined in Run.hh

17

(Figure 11b). Attention, the definition of ParticleInfo in Figure 11b is used by default. It can be defined

differently, if the position of the particle is considered additionally, as shown in Figure 22.

Figure 11. Code to collect the transmitted protons for STIM-T (a).

Definition of the ParticleInfo struct (b).

2.6. Detection of X-rays for PIXE-T

For PIXE-T, we collect the energy and momentum of the following two types of X-rays in two different

files separately.

 The first file contains the information of emitted X-rays after they have gone through the

phantom, which are also called “gamma at exit”, because their information is collected after

they get out of the phantom. The “at exit” information is collected in the

TrackingAction::PostUserTrackingAction() (Figure 12a).

(a)

(b)

18

 The second file contains the information of X-rays just when they are created, which are also

called “gamma at creation”, because their information is collected at the point when they are

generated. The “at creation” info is collected in the StackingAction::ClassifyNewTrack()

method (Figure 12b).

The same structure type ParticleInfo is used to save the energy and momentum of every X-ray (Figure

11b).

Figure 12. Codes to collect the X-rays: (a) for X-rays at exit, (b) for X-rays at creation for PIXE-T.

(a)

(b)

19

2.7. An example of pixe3d.mac

Here we explain the role of the important lines in pixe3d.mac (Figure 13).

Figure 13. Important lines in pixe3d.mac.

Tracking information verbosity. By

default, it is 0. To obtain detailed step

information, specify 2

When the object in

DetectorConstruction is cube,

it is possible to modify the

material and also the size here.

See section 2.4

Modify the physics. By default,

it is G4EmLivermorePhysics

used for electromagnetics

physics. It is defined in

PhysicsList

Energy and type of incident

particle

Direction cosines
Position
Number of incident particles

Scan parameters: number of

projections, slice, and pixels

20

2.8. Execution of a simulation

First of all, let’s assume that the user has already installed Geant4 under for illustration only, /your-G4-

install/, and stim_pixe_tomography example under /home/you/stim_pixe_tomography. To run a

simulation, the first step is to create a build directory.

cd stim_pixe_tomography // enter in stim_pixe_tomography example

mkdir build // create a build directory in stim_pixe_tomography example

cd build // enter in build directory

cmake -DGeant4_DIR=/your-G4-install/lib64/your-G4-version /home/you/stim_pixe_tomography

 // run CMake to generate the Makefiles needed to build the

application

make // build the executable

./stim_pixe_tomography -s pixe3d.mac // run a simulation for STIM-T, the argument “-s” is

necessary, otherwise an error will occur

Similarly, for PIXE-T, run as follows:

./stim_pixe_tomography -p pixe3d.mac // run a simulation for PIXE-T, the argument “-p” is

necessary, otherwise an error will occur.

// After correct configuration, the following lines will appear on the screen:

-- Configuring done

-- Generating done

-- Build files have been written to: …/stim_pixe_tomography/build

2.9. Visualization of phantoms

Type the following commands to visualize the phantoms:

make // compile the stim_pixe_tomography example

./stim_pixe_tomography // visualize current phantom

Figure 14 - Figure 16 show the visualization of three built-in phantoms respectively.

21

Figure 14. Visualization of built-in cube phantom

Figure 15. Visualization of built-in C. elegans phantom

Figure 16. Visualization of the ICF target phantom

x

z

y

22

2.10. Format of simulation output files

For STIM-T, the output is a binary file called ProtonAtExit.dat, saving the energy and momentum

information of protons at exit for all the runs.

For PIXE-T, two binary files GammaAtCreation.dat and GammaAtExit.dat are generated at the end of

the simulation, saving the energy and momentum information of X-rays at creation and at exit for all

the runs.

For each run, the index of projection, slice, and pixel and the number of particles are written in the form

of a structure type RunInfo in the output (Figure 17). Then the vector containing the energy and

momentum of particles, in the form of a structure type ParticleInfo (Figure 11b) is written after the

RunInfo (Figure 18).

Figure 17. Structure type RunInfo

23

Figure 18. Structure of the output file for a STIM-T or PIXE-T simulation

RunInfo

Vector saving ParticleInfo(s)

RunInfo

Vector saving ParticleInfo(s)

Vector saving ParticleInfo(s)

Vector saving ParticleInfo(s)

RunInfo

RunInfo

ParticleInfo

24

25

3. Selection of particles of interest

For STIM-T, the particle of interest is transmitted proton after the simulation.

For PIXE-T, the particle of interest is secondary emitted X-ray.

During the simulation, all the transmitted protons or all the X-rays (in 4π solid angle) are collected

whatever their direction. In order to model a detector at a given position and with a specific angular

aperture, we select the data after the simulation.

3.1. Parameters of selection

To understand the principle of the selection, we need to first specify some necessary variables:

 nbProjection: number of projections

 nbSlice: number of slices

 nbPixel: number of pixels

 totalAngleSpan: angle of scan, for example 180°

 angleOfDetector: angle between the position of detector and the direction of incident protons

(𝐴𝑂�̂� in Figure 19a for first projection and (𝐴𝑂𝑥′̂) in Figure 20).

 distanceObjectDetector: distance between scanned object and detector (OA in Figure 19a).

 radiusOfDetector: radius of entrance window of detector (AB in Figure 19a)

 theta: half apex angle of detection, 𝜃 = 𝐴𝑂�̂� in Figure 19 and Figure 20.

Figure 19 shows the positions of detector and object at first projection 0.

Figure 20 shows the positions of detector and object at the projection i. Whatever the projection is, the

angle between the position of detector and the direction of incident protons keeps fixed.

26

Figure 19. Schematic position of detector at projection index = 0 for PIXE-T experiments, in this case,

angleOfDetector = 135°

y

angleOfDetector

x

Incident protons

Projection index = 0

A

O

 X-Y cross sectional view (a)

 B

Proton beam 45°

O

A
B

z

y

x

Three-dimensional view (b)

y

angleOfDetector

x

Incident protons
Projection index = i

α = i × angleStep

O

A

X-Y cross sectional view

B

A

x’

27

Figure 20. Schematic position of detector at projection index = i for PIXE-T experiments, in this case,

angleOfDetector = 135°.

3.2. Principle of selection

The principle of the selection is based on the position of the detector according to the sample and the

beam. It also depends on the shape and size of the entrance window, which is assumed circular in our

case. In fact, we provide two methods of selection:

 Selection with particle momentum

 Selection with particle position and momentum

By default, the first option, i.e. the selection with particle momentum is proposed. It is based on the

assumption that the phantom size is negligible relative to the size and distance of the detector, which is

usually the case for micro-tomography. Of course, this will significantly increase the size of simulated

data. Indeed, the method of selection determines the definition of the struct ParticleInfo, which stores

particle information as mentioned in section 2.5 (Figure 11b). For the selection using position and

momentum, the position of the particle of interest is additionally saved in ParticleInfo (Figure 21)

defined in Run.hh.

Figure 21. ParticleInfo definition in case of selection with momentum and position.

3.3. Selection with particle momentum

The approximate selection using particle momentum is based on the assumption that the phantom size

is negligible relative to the size and distance of the detector. In this case, the selection only requires to

parameterize the angular position 𝜶 of detector and its half apex angle 𝜽. The X-ray is considered

“detected” only if the angle between its momentum and 𝑂𝐴⃗⃗⃗⃗ ⃗ (Figure 19b) is less than the half apex angle

𝜽 (𝐴𝑂�̂� in Figure 19b). 𝜽 depends on the radius and distance of detector:

28

𝜽 = atan
radiusOfDetector

distanceObjectDetector

In the scripts described in the following section 3.3, there are two ways to define 𝜽:

 Users can specify directly radiusOfDetector and distanceObjectDetector

 Users can arbitrarily define 𝜽 value especially when they want a large solid angle for the

detection. A large solid angle can significantly reduce the PIXE-T simulation time since it

requires less incident particles.

3.4. Selection with particle position and momentum

The selection using particle position and momentum is a more precise method that should used when

the assumption of negligible phantom size is not valid. In this case, the selection requires to parameterize

the angular position 𝜶, distance 𝒍 (distanceObjectDetector) and radius𝒓 (radiusOfDetector) of the

detector.

To describe this method, we define (Figure 22):

 Point C (x0, y0, z0): the position of the particle when being collected in the simulation, i.e. either

at the end of the track or at the point where the particle is generated, according to the user needs.

 𝑛0⃗⃗⃗⃗ (a, b, c): the momentum of the particle

 �⃗� = 𝑂𝐴⃗⃗⃗⃗ ⃗: the vector orthogonal to the detector entrance window

 Point P(xi, yi, zi): the intersection point between the trajectory of the particle and the detector

entrance window.

According to the angular position of the detector, we have:

�⃗� = (𝑙 cos 𝛼 , 𝑙 sin 𝛼 , 0)

So the position of center point of the entrance window is: A (𝑙 cos 𝛼 , 𝑙 sin 𝛼 , 0)

Knowing the vector �⃗� orthogonal to the detector entrance window and the point A, the equation of the

plane of the entrance window is established as follows:

𝑙 cos 𝛼 (𝑥 − 𝑙 cos 𝛼) + 𝑙 sin 𝛼 (𝑦 − 𝑙 sin 𝛼) + 0(𝑧 − 0) = 0 (3.1)

Knowing the point C (x0, y0, z0) and momentum 𝑛0⃗⃗⃗⃗ (a, b, c), the trajectory of the particle is defined as

follows:

{

𝑥 = 𝑥0 + 𝑎𝑡
𝑦 = 𝑦0 + 𝑏𝑡
𝑧 = 𝑧0 + 𝑐𝑡

 (3.2)

Where t is a constant

29

Substituting (3.2) to (3.1), we can obtain the intersection point P of the trajectory and the detector plane

by calculating t:

𝑡 =
(𝑙 cos 𝛼 − 𝑥0)𝑙 cos 𝛼 + (𝑙 sin 𝛼 − 𝑦0)𝑙 sin 𝛼

𝑎𝑙 cos 𝛼 + 𝑏𝑙 sin 𝛼
=

 𝑙2 − 𝑥0𝑙 cos 𝛼 − 𝑦0𝑙 sin 𝛼

𝑎𝑙 cos 𝛼 + 𝑏𝑙 sin 𝛼

The condition 𝑎𝑙 cos 𝛼 + 𝑏𝑙 sin 𝛼 = 0 should be excluded, because it means the trajectory is parallel to

the detector plane. In this case, the particle is not detected.

Thus, the intersection point P (xi, yi, zi) is:

{

𝑥𝑖 = 𝑥0 + 𝑎𝑡
𝑦𝑖 = 𝑦0 + 𝑏𝑡
𝑧𝑖 = 𝑧0 + 𝑐𝑡

We calculate the distance PA. If PA is less than the radius of detector 𝒓, it means the particle is detected.

Figure 22. Detection of particle using precise selection.

y

C

x

Incident protons
Projection index = 0

A

O

 X-Y cross sectional view

B

P

𝑛0⃗⃗⃗⃗

�⃗�

30

3.5. Implementation of selection scripts

3.5.1. Selection procedure using particle momentum

Three scripts for the selection using particle momentum are available to read output files for STIM-T

transmitted protons and PIXE-T X-rays. Running the scripts generates the final files, which will be used

as an input for the tomographic reconstruction code, TomoRebuild for example, to generate the

reconstructed images:

 BinToStd_ProtonAtExit.C,

Reads proton information from ProtonAtExit.dat, selects the data and generates

StimEvent_std_AtExit.DAT

 BinToStd_GammaAtCreation.C,

Reads X-ray information from GammaAtCreation.dat, selects the data and generates

PixeEvent_std_AtCreation.DAT

 BinToStd_GammaAtExit.C,

Reads X-ray information from GammaAtExit.dat, selects the data and generates

PixeEvent_std_AtExit.DAT

It should be noted that BinToStd_GammaAtCreation.C and BinToStd_GammaAtExit.C are nearly

same scripts, the only difference is the file path.

The user should specify the following variables (Figure 23) in the scripts as explained in section 3.1:

Figure 23. Parameters to define in the scripts

Attention, the angleOfDetector is usually 0° for STIM-T, which is in accordance with experiments

(STIM detector in forward position at 0°).

The selection of X-rays or protons is achieved by the IsDetected() method (Figure 24), by comparing

the angle between the particle momentum and the direction of the center of detector (𝑂𝐴⃗⃗⃗⃗ ⃗) with the half

apex angle theta (Figure 19b).

 centerofDetector refers to the direction of the center of detector

 gammaMomentum or protonMomentum refer to the momentum of X-ray or proton.

Suppose the particle momentum is (x0, y0, z0), and 𝑂𝐴⃗⃗⃗⃗ ⃗ is (x1, y1, z1). The angle between particle

momentum and 𝑂𝐴⃗⃗ ⃗⃗ ⃗⃗ is 𝛽.

31

𝛽 is calculated as followsing:

cos 𝛽 =
𝑂𝐴⃗⃗ ⃗⃗ ⃗ ∙ 𝑂𝐶⃗⃗⃗⃗ ⃗

|𝑂𝐴⃗⃗ ⃗⃗ ⃗| × |𝑂𝐶⃗⃗⃗⃗ ⃗|
=

𝑥0𝑥1 + 𝑦0𝑦1 + 𝑧0𝑧1

√𝑥0
2 + 𝑦0

2 + 𝑧0
2 × √𝑥1

2 + 𝑦1
2 + 𝑧1

2

 Figure 24. Codes to select particles using momentum.

3.5.2. Selection procedure using particle momentum and position

The scripts used for the selection for protons and X-rays using particle position and momentum are:

 BinToStd_proton_position.C

 BinToStd_gamma_position.C

Similarly, the selection of X-rays or protons is achieved by the IsDetected_position() method (Figure

25), by comparing the distance of intersection point P(xi, yi, zi) (Figure 22) to the center of detector with

the radius of the detector. Note that in these two scripts, the selection using only momentum is also

available if the variable usePosition is false.

If the particle is not detected, it will not be recorded

32

Figure 25. Codes to select particles using momentum and position.

3.5.3. Execution of the scritps

Type the following command to use the script:

root BinToStd_GammaAtCreation.C

 Idem for BinToStd_GammaAtExit.C, BinToStd_ProtonAtExit.C,

BinToStd_gamma_position.C and BinToStd_proton_position.C

3.6. Format of files for tomographic reconstruction

As mentioned in section 3.3, the tomographic reconstruction code that is used is TomoRebuild. The X-

rays and protons are selected using the corresponding scripts. The relevant information is written in

ProtonAtExit.dat, GammaAtCreation.dat and GammaAtExit.dat.

For STIM-T, a structure type StimEvent is defined in BinToStd_ProtonAtExit.C, containing the

following information of a proton (Figure 26):

 energy_keV, the energy of the proton in keV

 pixelIndex, the index of pixel of the run that generates the proton

 sliceIndex, the index of slice of the run that generates the proton

 projectionIndex, the index of projection of the run that generates the proton

Eventually, a binary file named StimEvent_std.DAT file will be generated.

If the particle is not detected, it will not be recorded

33

Similarly, for PIXE-T, a structure type PixeEvent is defined in BinToStd_GammaAtCreation.C and

BinToStd_GammaAtExit.C, containing the following information:

 energy_10eV, the energy of the X-ray in unit 10 eV

 pixelIndex, the index of pixel of the run that generates the X-ray

 sliceIndex, the index of slice of the run that generates the X-ray

 projectionIndex, the index of projection of the run that generates the X-ray

Eventually, a binary file named PixeEvent_std.DAT file will be generated.

Figure 26. Definition of the structure for StimEvent (a) and PixeEvent (b).

 (a)

 (b)

34

35

4. Interruption of a simulation

If a simulation is interrupted by accident, like power failure, it is feasible to continue the simulation

from the projection when the interruption occurs. For this, you need to know exactly the projection

where it stopped.

In this case, we provide the following scripts to identify the projection of interruption:

 LocateInterruption_ProtonAtExit.C for a STIM-T simulation

 LocateInterruption_GammaAtExit.C for a PIXE-T simulation

The user can resume the simulation from where it was interrupted, using a new pixe3d.mac generated

by adjusting parameters in GPSPointLoop.C once the user is aware of the projection of interruption.

For instance, if the simulation was interrupted at projection 65, then it should be re-starded at projection

65 (redo the interrupted projection). Thus, users just need to uncomment the line (Figure 27):

if (projectionIndex<65) continue;

Figure 27. Code in GPSPointLoop.C.

It should be noted that LocateInterruption_ProtonAtExit.C and LocateInterruption_GammaAtExit.C

are nearly same scripts, the only difference is the file path.

In case of interruption, the selection of X-rays and protons is accomplished by other scripts:

 Concatenate_BinToStd_ProtonAtExit.C

Reads X-ray information from ProtonAtExit_1.dat and ProtonAtExit_2.dat, rewrites in

StimEvent_std_AtExit.DAT

o ProtonAtExit_1.dat is the output file that was interrupted

o ProtonAtExit_2.dat is the output file that completes the rest of the simulation

 Concatenate_BinToStd_GammaAtCreation.C

Reads X-ray information from GammaAtCreation_1.dat and GammaAtCreation_2.dat,

rewrites in PixeEvent_std_AtCreation.DAT

36

 Concatenate_BinToStd_GammaAtExit.C

Reads X-ray information from GammaAtExit_1.dat and GammaAtExit_2.dat, rewrites in

PixeEvent_std_AtExit.DAT

Parameters should be given like explained in section 3.5. In addition, the user should set P_interrupt

variable (Figure 28), which is the projection of interruption.

Figure 28. Parameters to define in case of interruption.

It should be noted that Concatenate_BinToStd_GammaAtCreation.C and Concatenate_BinToStd_GammaAtExit.C

are nearly same scripts, the only difference is the file path.

In addition, it should be noted that all the scripts described in this section deal with ParticleInfo, which

does not consider the position of the particle (Figure 11b). If the interrupted simulation considers the

position of the particle, with ParticleInfo defined as in Figure 21, then the

LocateInterruption_ProtonAtExit.C and LocateInterruption_GammaAtExit.C scripts should be

modified.

Figure 29. ParticleInfo definition in LocateInterruption_ProtonAtExit.C and

LocateInterruption_GammaAtExit.C.

This definition should
be replaced by the
following definition

37

5. Multithreading

stim_pixe_tomography example normally runs in multithreaded mode with the default number of

threads depending on the device. But the user can specify the number of threads nThreads in

stim_pixe_tomography.cc (Figure 30), or specify it as an argument when running the simulation:

./stim_pixe_tomography -p pixe3d.mac 100 // 100 is the number of threads

./stim_pixe_tomography -p pixe3d.mac 1 // sequential mode

Figure 30. Codes to set threads.

38

39

6. Simulation keeping a constant energy for the protons

As explained in the previous publication [3], the user can make a simulation whilst keeping a constant

energy for protons in the material, for example 1.5 MeV. This assumes there is no energy loss of protons.

This assumption can be achieved by modifying the source code of Geant4 (Figure 31).

Figure 31. Code for using protons with constant energy.

Initial code in G4Step.icc Modified code in G4Step.icc (example at 1.5 MeV)

40

41

7. Visualization of spectrum of X-rays and protons

7.1. Spectrum from simulation results

The following scripts are available to visualize the spectrum of protons and X-rays:

 Spectrum_proton.C

 Spectrum_gamma.C

These two scripts read simulation files: ProtonAtExit.dat for protons (STIM-T); GammaAtCreation.dat

and GammaAtExit.dat for X-rays (PIXE-T). They plot a histogram of energy spectrum of protons or X-

rays. The energy of the particles are float in keV. Users can choose to plot only a certain part of the data

by specifying the following parameters:

 projection_index_begin, projection_index_end: the first and last projection to be plotted

 slice_index_begin, slice_index_end: the first and last slice to be plotted

 bin: the number of bins of the plotted histogram. The default value is 100.

For example, if these variables are set as shown in Figure 32, it means the particles from projection 0 to

10, slice 0 to 1 are visualized in the spectrum. Note that projection 10 and slice 1 are included.

Figure 32. Parameters for visualization of the spectrum of X-rays.

7.2. Spectrum from input of tomographic reconstruction

The following scripts are available to visualize the spectrum of protons and X-rays:

 TomoSpectrum_HIST_proton.C for protons

 TomoSpectrum.C for X-rays

 TomoSpectrum_HIST.C for X-rays

These three scripts read the file for tomographic reconstruction: TomoSpectrum_HIST_proton.C reads

StimEvent_std.DAT, both TomoSpectrum.C and TomoSpectrum_HIST.C read PixeEvent_std.DAT.

The energy of the particles are integer.

After running each script, the spectrum data are written in a txt file containing the two columns:

 first column is the channel (energy in unit keV for STIM; 10 eV for PIXE)

 second column is the number of particles

42

Users can choose to plot only a certain part of the data by specifying the following parameters:

 projection_index_begin, projection_index_end: the first and last projection to be plotted

 slice_index_begin, slice_index_end: the first and last slice to be plotted

They generate a spectrum of X-rays with 4096 channels for x axis and the number of event for y axis.

 For protons, each channel represents 1 keV, thus the maximal energy of X-rays is 4096*1

keV=4096 keV. In fact, when generating the input file for tomographic reconstruction (using

BinToStd_ProtonAtExit.C), the energy of proton is limited to less than 4095 keV. Therefore,

there will no be energy overflow.

 For X-rays, each channel represents 10 eV, thus the maximal energy of X-rays is

4096*10eV=40.96 keV. In fact, when generating the input file for tomographic reconstruction

(using BinToStd_GammaAtCreation.C or BinToStd_GammaAtExit.C), the energy of X-rays

is limited to less than 40.95 keV. Therefore, there will no be energy overflow.

The difference between the TomoSpectrum.C and TomoSpectrum_HIST.C lies in the generated spectra

(Figure 33) after running the scripts. TomoSpectrum.C plots a graph (points), while

TomoSpectrum_HIST.C plots a histogram (bars). TomoSpectrum_HIST_proton.C generates a

histogram (bars).

Figure 33. Examples of the spectra: (a) generated by TomoSpectrum.C; (b) generated by

TomoSpectrum_HIST.C

Type the following command to use the script:

root Spectrum_proton.C

43

Idem for Spectrum.gamma.C, TomoSpectrum_HIST_proton.C, TomoSpectrum.C, and

TomoSpectrum_HIST.C.

44

45

8. Potential use for other applications

This example was initially developed for applications in tomographic imaging. However, it is also suited

for “classical” (2D) STIM and PIXE imaging. Users just need to do the simulation with only one

projection.

In addition, other types of particles can be used in the example, because Geant4 contains all physical

processes for particles, including ions and X-rays in a wide energy range. Thus, users just need to modify

the type of incident particles in the macro used to run the code.

46

47

9. List of scripts in the example

When doing a simulation, users may use the scripts in the following order:

 GPSPointLoop.C: it generates a macro file to run the simulation.

 BinToStd_ProtonAtExit.C: it reads the STIM-T simulation results and generates the data file

for STIM-T reconstruction using selection with particle momentum.

 BinToStd_GammaAtCreation.C: it reads the PIXE-T simulation results for X-rays at creation

and generates the data file for PIXE-T reconstruction using selection with particle momentum.

 BinToStd_GammaAtExit.C: it reads the PIXE-T simulation results for X-rays at exit and

generates the data file for PIXE-T reconstruction using selection with particle momentum.

 BinToStd_proton_position.C: it reads the STIM-T simulation results and generates the data file

for STIM-T reconstruction using selection with particle position and momentum

 BinToStd_gamma_position.C: it reads the PIXE-T simulation results for X-rays and generates

the data file for PIXE-T reconstruction using selection with particle position and momentum

 LocateInterruption_ProtonAtExit.C: in case of interruption, it locates the projection position

of interruption for STIM-T simulation.

 LocateInterruption_GammaAtExit.C: in case of interruption, it locates the projection position

of interruption for PIXE-T simulation.

 Concatenate_BinToStd_ProtonAtExit.C: in case of one interruption, it reads STIM-T

simulation results and generates the data file for STIM-T reconstruction.

 Concatenate_BinToStd_GammaAtCreation.C: in case of one interruption, it reads PIXE-T

simulation results for X-rays at creation and generates the data file for PIXE-T reconstruction.

 Concatenate_BinToStd_GammaAtExit.C: in case of one interruption, it reads PIXE-T

simulation results for X-rays at exit and generates the data file for PIXE-T reconstruction.

 Spectrum_proton.C: it visualizes the spectrum of protons and plots a histogram by reading

simulation result ProtonAtExit.dat.

 Spectrum_gamma.C: it visualizes the spectrum of X-rays and plots a histogram by reading

simulation result GammaAtCreation.dat or GammaAtExit.dat.

 TomoSpectrum_HIST_proton.C: it visualizes the spectrum of protons and plots a histogram

by reading StimEvent data. It also writes the spectrum data in a txt file.

 TomoSpectrum.C: it visualizes the spectrum of X-rays and plots a graph by reading PixeEvent

data. It also writes the spectrum data in a txt file.

 TomoSpectrum_HIST.C: it visualizes the spectrum of X-rays and plots a histogram by reading

PixeEvent data. It also writes the spectrum data in a txt file.

Scripts for specific use:

48

 Extract_Projection.C: it extracts 50 projections from a PixeEvent data file for tomographic

reconstruction, which contains 100 projections. In fact, it extracts the projection 0, 2, 4, 6, 8…98

from projections 0-99. It eventually generates a new file with new index number of projections

0-49.

 Check_PixeEventFile.C: it checks if the index of projections of a PixeEvent data file for

tomographic reconstruction is correct. For example, if the user extract 50 projections from a

data file composed 100 projections, it is necessary to make sure in the new data file, the index

of projection starts from 0 and ends at 49.

 Extract_Slice.C: it extracts a certain number of slice(s) from a PixeEvent data file for

tomographic reconstruction. Users need to specify the first and the last slice to be extracted.

Note that when writing a new data file, the index of slices will be initiated from 0.

 Concatenate_BinToStd_GammaAtCreation_fabricate.C: if users make a PIXE-T simulation

on a symmetrical object with only one projection, this script can be used to fabricate the other

99 projection data for X-rays at creation with same energy.

 Concatenate_BinToStd_GammaAtExit_fabricate.C: if users make a PIXE-T simulation on a

symmetrical object with only one projection, this script can be used to fabricate the other 99

projection data for X-rays at exit with same energy

Scripts to generate voxelized phantoms:

In order to compare the reconstructed tomographic images with original phantoms, it may be necessary

to use a voxelized phantom. More information is available in the publication [7]:

 generate_voxelized_sphere_phantom.py: it generates a voxelized phantom of an inertial

confinement fusion target.

 generate_voxelized_worm_phantom.py: it generates a voxelized phantom of the upper part of

C. elegans.

49

References

[1] Michelet C, Barberet P, Moretto P, Seznec H. Development and applications of STIM-and PIXE-

tomography: A review. Nucl Instrum Methods Phys Res B. 2015;363:55-60.

[2] Michelet C, Li Z, Yang W, Incerti S, Desbarats P, Giovannelli JF, et al. A Geant4 simulation for

three-dimensional proton imaging of microscopic samples. Phys Med. 2019;65:172-80.

https://doi.org/10.1016/j.ejmp.2019.08.022.

[3] Michelet C, Li Z, Jalenques H, Incerti S, Barberet P, Devès G, et al. A Geant4 simulation of X-ray

emission for three-dimensional proton imaging of microscopic samples. Phys Med. 2022;94:85-93.

https://doi.org/10.1016/j.ejmp.2021.12.002.

[4] Michelet C, Barberet P, Desbarats P, Giovannelli J-F, Schou C, Chebil I, et al. An implementation

of the NiftyRec medical imaging library for PIXE-tomography reconstruction. Nucl Instrum Methods

Phys Res B. 2017;404:131-9. https://doi.org/10.1016/j.nimb.2017.01.067.

[5] Lu H, He X, Meng J, Guo N, Rong C, Zhang W, et al. Reconstruction of Ge spatial distribution in

ICF target using PIXE-T. Fusion Eng Des. 2016;113:43-50.

https://doi.org/10.1016/j.fusengdes.2016.10.006.

[6] Guo N, Lu H, Wang Q, Meng J, Gao D, Zhang Y, et al. A dual-PIXE tomography setup for

reconstruction of Germanium in ICF target. Nucl Instrum Methods Phys Res B. 2017;404:162-6.

https://doi.org/10.1016/j.nimb.2017.04.041.

[7] Li Z, Incerti S, Beasley D, Shen H, Wang S, Seznec H, Michelet C. Accuracy of three-dimensional

proton imaging of an inertial confinement fusion target assessed by Geant4 simulation. Nucl Instrum

Methods Phys Res B. 2023; 536, 38-44. https://doi.org/10.1016/j.nimb.2022.12.026

https://doi.org/10.1016/j.ejmp.2019.08.022
https://doi.org/10.1016/j.ejmp.2021.12.002
https://doi.org/10.1016/j.nimb.2017.01.067
https://doi.org/10.1016/j.fusengdes.2016.10.006
https://doi.org/10.1016/j.nimb.2017.04.041
https://doi.org/10.1016/j.nimb.2022.12.026

